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(57) ABSTRACT

‘The invention is a method of allocating a1 computer to
service a request for a data set in a system having a plurality
of computers. The method is implemented on a neural
having at an input layer having input nodes and an output
layer having output nodes, where each output node is
associated with a specific computer. Connecting the input
nodes (o the output nodes are weights w(j,k). Each output
nade js associated with a computer in the system, and the
inputs to the input nodes are dependent upon the number of
requests for specific pages.
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Graph 1 Performance of page placement algorithm using competitive learning (Neural
Network) versus Round Robin Algorithms (for Non-Uniform Input Data Distribution)
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METHOD FOR ALLOCATION OF WEB
PAGES USING NEURAL NETWORKS

CROSS-REFERENCE TO RELATED
APPLICATIONS

Not applicable.

STATEMENT REGARDING FEDRERALLY
SPONSORED RESEARCH

Not applicable.

INCORPORATION-BY-REFERENCE QF
MATERIAL ON CD

Not applicable
BACKGROUND OF THE INVENTION

(1) Field of Invention

The invention relates to methods of allocating page
requests to servers on a web [arm and, more particularly, to
using a neural network to allocate page requests to web farm
servers.

(2) Description of Related Art

The World-Wide-Web offers iremendous opportunities lor
marketers to reach a vast variety of audiences at less cost
than any other medium. Recent studies have shown that the
web consumes more Internet bandwidth than any other
application. With huge amount of capital invested in these
sites, it has become necessary to understand the cftective-
ness and realize the potential opportunities offered by these
services.

The number of Web siles on the Internet has grown from
an estimated 11,000 sites in 1994 to over 4 million in 2000.
The traffic load on the web site is normally measured in
lerms of the number of http requests handled by the web site.
Web sites with heavy traffic loads must use multiple servers
running on different hardware; consequently this structure
facilitates the sharing of information among servers through
a shared file system or via a shared data space. Examples of
such a system include Andrews file system (AFS) and
distributed file system (DI'S). if this facility is not there, then
each server may have its own independent file system.

There are four basic approaches to route requests among,
the distributed Web-server nodes: (1) client-based, (2) DNS-
based, (3) dispalcher-based, and (4) scrver-based. In the
client-based approach, requests can be routed to any Web
server architecture even if the nodes are loosely connected
or are not coordinated. The routing decisions can be embed-
ded by the Web clients like browsers or by the client-side
proxy servers. For example, Netscape spreads the load
among various scrvers by selecting a random number i
between 1 and the number of servers und directs the requests
lo the server www.netscape.com. This approach is not
widely applicable as it is noi casily scalable and many Web
sites do not have browsers to distribute loads among servers.
However, client-side proxy servers require modifications on
Internet compenents that are beyond the control of many
institutions that manage Web server systems.

In the DNS based systems, by translating from 4 symbaolic
name to an IP address, the DNS cun implement a large set
of scheduling policies. The DNS approach is limited by the
constraint of 32 Web servers for each public URI. because
of UDP packel size constraints although it can be scaled
easily from LAN to WAN distributed systems.
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In the dispatcher-based approach, cne single entity con-
trols the routing decisions and implemented through a wide
variety of algorithms. Dispatcher failure can disable the
system. However, as a centralized controller, the dispatcher
can achieve fine-grained load balancing.

The server-based approach can be viewed as a combina-
tion of the DNS approach and the dispatcher approach. In
the server-based approach, two levels of dispatching are
used: (1) cluster DNS first assigns a client request to a Web
server; and (2) each Web server may reassign the request to
any other server of the cluster. It can achieve the fine-grained
control on request assignments as the dispatcher approach
and reduces the impact of a central dispatcher failure, but
redirection mechanisms typically increasc the latency time
perceived by the users.

Only the Internet2 Distributed Storage Infrastructure
Project (12-DSI) proposes a “smart” DNS that uses network
proximily information such as transmission delays in mak-
ing routing decisicns, as proposed by M. Beck, T. Moore,
“The Internet2 Distributed Storage Infrastructure Project:
An architecture for Internet conlent channels,” Proc. Of 37
Workshop on WWW Caching, Manchester, England, June
1998,

Traditionally, scheduling algorithms for distributed sys-
tems are not generally applicable to control Web server
clusters because of the non-uniformity ot load from different
client domains, high variability of real Web workload, and a
high degree of sclf-similarity in the Web requests. The Web
server load information becomes obsolete quickly and is
poorly correlated with future load conditions. Further,
because the dynamics of the WWW involves high variability
of domain and client workloads, exchange of information
about the load condition of servers is not sufficient to
provide scheduling decisions. What is needed is a real time
adaptive mechanism that adapts rapidly to changing envi-
renment. However, none of the approaches incorporates any
kind of intelligence or learning in routing ol Web requests.

Further, in any routing scheme, request turn around time
(fime to service the request) can be greatly decreased if the
server chosen to respond to a request has the requested file
in that server's cache memory. For instance, requests
encrypted using Secure Sockel Layer (SSI.) use a session
key to encrypt information passed between a client and a
server. Since session keys are expensive to generale, each
SSL request has a lifetime of about 100 seconds and requests
between a specific client and server within the lifetime of the
key use the same session key. So it is highly desirable to
route the requests multiple requests from the same client 1o
a server be routed to the same server, as 4 different server
may not know about the session key, and routing to the same
server increases the probability that the prior request is still
in the systems cache memory, further decreasing the time
required to service the user request. One proposal that
combines caching and server replication for client-side
proxy servers is given by M. Baentsch, L. Baum, G. Molter,
“Enhancing the Web’s infrastructure: From caching to Rep-
lication,” 1EEE Intermet Computing, Vol. 1, No. 2, pp.
18--27, March—Apnl 1997. However, a general scheme to
increase the probability that the server chosen to service a
particular request has the request page in cache is not
presently available,

BRIEF SUMMARY OF THE INVENTION

It is an object of the invention to provide a technique of
servicing file requests on a web farm to increase the prob-
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ability thal the server selected to service the file request will
have the requested file in cache.

It is an object of the present invention to provide a routing
system that reduces or eliminates the need for client side
caching,

It is an object of the invention to assist load balancing
across (he servers in a web farm,

The invention is a system to route requests in a web farm
through the use of a routing algorithm utilizing a neural
network with at least two layers, an input layer and an out
put layer. The input layer corresponds 1o the page identificrs
P(}) and a function of the number of requests for that specific
page R(P(j)) over a period of time. The oulputs are the
servers, 5(i). A particular server S(K) is chosen to service a
particular page request P(J) by minimizing (over i), using a
suitable metric, the “distance” hetween R(P(J)) and w(i, ),
where w(i,j) is the set of weights connecting the input layer
nodes ta the output layer nodes. The neural weight w(J,K) is
then updated, using a neighbothood funclion and a balanc-
ing function. The prelerred update neighborhoaod function is
defined to be a gradient descent rule to a corresponding
energy function. Heunstics to select parameters in the
update rule that provide balance between hits and load
balancing among servers are included.

Simulations show an order of magnitude improvement
over traditional DNS based load-balancing approaches.
More specifically, performance of our algorithm ranged
between 85% (o 98% hil rate compared 1o a performance
range of 2% to 40% hit rate for a round robin scheme when
simulating real Web traffic. As the traffic increases, our
algotithm performs much hetter than the round robin
scheme. A detailed experimental analysis is presented in this

paper.
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows 4 schematic of a general web farm using a
router to distribute requests 1o the servers in the web farm.

FIG. 2 shows a schematic depicting the general Kohonen
network ol an input layer, an output layer, and the weights
connecting the two layers.

FIG. 3 shows a simplified Kohonen network.

FIG. 4a shows a cluster of web pages on a site.

I'IG. 4b show the framework of the invention, routing
requests through a neural network.

FIG. 5 is a flowchart showing impiementation of one
embodiment of the invention.

FIG. 6 shows a graph 1 depicting the perforniance of page
placement algorithm using competitive learning (Neural
Network) versus Round Robin Algorithms (for Non-Uni-
form Input Data Distribution)

FIG. 7 shows graph 2 depicting the performance of page
placement algorithm using competitive learning (Neural
Network) versus Round Robin Algorithms (for Uniform
Inpwt Data Distribution)

DETAILED DESCRIPITION OF THE
INVENTION

As used in this application, a Web server farm or a server
cluster, refers to a Web site that uses two or more servers 1o
service user requests. Typically, a single server can service
user requests for the files (such as pages) of a Web site, but
larger Web sites may require multiple servers. The Web farm
servers do nol have 1o be physically located at a common
site. A Web farm also refers 1o an ISP (internet service
provider) that hosts sites across multiple servers, or that may
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4

store frequently requested pages across more than one server
to reduce the time to service a user request for these pages.

The servers in a web farm may have individual operating
systems or a shared operating system and may also be set up
to provide load balancing when traffic to the web site is high.
In a server farni, if one server [ails, another can act as
backup.

Web farms or clusters typically have a single machine or
interface acting to distribute (dispatch) the file requests to
servers in the farm. Such a single machine will be termed a
proxy-server (proxy for the entire site), or a rouier. An
example of such a system is shown in FIG. 1. FIG. 1 shows
an example ol this type of system, where requests may come
from various client sites 1 to the router 2, which then pools
the requests and directs them to a specific server 3. Here the
servers 8, . .. 8§, each have their own cache memory 4 and
may share & common file system 5. Correspondingly, each of
these servers may have their individual storage. The router
decides the allocation of weh page request to individual
servers, and then dispatches a particular request to a par-
ticular server. The router may be also be a server, which
services particular requests.

In large systems or sites, router tasks may be undertaken
by a plurality of machines or routers, and may include an
organizational structure to allocatc tasks amongst the rout-
ers. For instance, certain pages may only be available from
a sub-set or cluster of the overall servers on the web farm.
Input to each cluster may be made simultancously, with only
the cluster storing the requesled file responding 10 the
request. Alternatively, input to a servicing cluster may be
determined by a master distributing router, which then
allocates the scrving cluster based upon some algorithin,
such as the neural network algorithm described herein.
Another way to view page clustering is to group “related”
pages into a cluster, where the “relation” can be any pre-
defined characteristic or characteristics, such as related
content. In this instance, each cluster may have may have its
own individual cluster gateway or router to distribule
requests across the servers in the cluster.

Each server in the farm (and can include the gateway
rauter itself) typically will have certain files stored in cache
memory. When the server receives a request lor a file, if the
server finds the page in cache, il returns it to the user
(through the gateway or directly to the user) without needing
to forward the request to server’s main memory or shared
server lile storage. Ifthe page is not in the cache, server main
Mmemory, or COmmon server memory, the server, acting as a
proxy server, can function as a client (or have the router
lunction as a client) on hehalf of the user, to use one ol its
own 1P addresses to request the page from a server remote
from the Webfarmn. When the page is retumed, the proxy
server relates it to the original request and forwards it on to
the user.

In a proxy cache such as maintained by ISP’s, clients
request pages from a local server instead of directly from the
source. The local server gets the page, saves it on disk and
forwards it to the client. Subsequent requests from other
clients get the cached copy, which is much faster (i.e.
reduces latency time) and does not consume Internet band-
width.

A client is defined as a program that cstablishes connec-
tions to the Internet, whereas a Web-server stores informa-
tion and serves clienl requests. A distributed Web-server
system or web farm is any architecture of multiple Web
servers that has some means of spreading the client requests
to the farm’s servers. A session is an entire period of access
from a single client to a given Web site. A session may issue
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many HIML page or file requests. Typically a Web page
consists of a collection of objects, and an object request
requires an access to a server.
The algorithm used in this invention is an aspect of
competitive learning that will next be generally described.

Competitive Learning—Background

In the simplest competitive leaming networks there is a
single layer of output units O, or output nodes, each is fully
connected to a set of inputs x, (input nodes) via connection
weights w,, (generally 30). A description of the algorithm
follows. Such a system is shown in FIG. 2.

Let x be an inpui vector (with components x,) to a network
of two layers with an associaled set of weights w,. The
standard competitive learning rule is given by:

Aw=mix-w*)

7 being a scalar. This rule “moves™ w,* towards x,. The i*
implies that only the set of weights corresponding to the
winning nodes is updated. The winning node is taken to be
the one with the largest output. Another way to write this is:

Aw=1O4X;- W),

where:

0 { 1 for { corresponding 1o the largest cutput
;=

0 otherwise

This is the adaptive Kohonen approach. The usual defi-
nition of competitive learning requires a winner-take-all
strategy. In many cases this requirement is relaxed o update
all of the weights in proportion lo some criterion, such as in
a neighborhood of “winning” node.

Kohonen’s Algorithms adjusts weights from common
input nodes to N-output nodes arranged in & 2-dimensional
grid shown in FI1G. 2, to form a vector quantizer, Input
vectors are presented sequentially in time and certain of the
weights are modified according to the update rule chosen,
and the neural network evolves or learns. Kohonen's algo-
rithm organizes weights such that “close” nodes are sensi-
tive to physically similar inputs. A detailed description of
this algorithm follows,

Let X, X5, . - ., X be a set of input veclor components,
which defines a point in N-dimensional space. The output
unils O, are arranged in an array and are fully connected 1o
input via the weights w,. A competitive learning rule is used
lo choose a “‘winning” weight vector w,*, such that, for each
.I.‘

. _ - .
tw; *-xl<=lw,~x| for all i,

For inslance, in the case of a two component vector X, (X,
and x;) and three outputs, with six corresponding weights
w_i=1,3; j=1,2 (fully connecting the input vector to the
outputs), Kohonen’s algorithm chooses the minimum of the
following 3 *distances™ (using the I, norm):

(X, -w **2+(x;-w ;)**2 (and correspondingly updat-
ing w,, and w,);

(X —wo P¥*24(x,—w,;)¥*2 (and correspondingly updat-
ing w21 and w,,); or

(X =W, )¥*24(3%,—w,,)**2 (and correspondingly updat-
ing w,, and w;)

with the Kohonen's update rule generally given by:

L=l

Aw,*=nhij,i*)x-w,-,"") for each |

5

10

25

30

35

40

45

50

55

60

65

6

Here h(j.i*) is a neighborhood function such that h(j,i*)=1
if j=i* but falls off with distance Ir,—r,*| between units j and
i* in the output array. The winner and “closc by™ weights are
updaled appreciably more than these further away. A typical
choice for h(j, i*) is:

—(Ir-raliZa2)
€ G

where o is a parameter that is gradually decreased to
contract the neighborhood. 7 is decreased to ensure conver-
genee.

‘The allocation rule used in the present invention is a
modification of the traditional Kohonen Rule and will be
described in a Web farm having N servers that service the
requesls for Web pages or files (files and pages are used
interchangeably to identify a data set which is accessible
through the site server/router or gateway via an identifying
address) where the servers are identified as 8, . .. §,, as
shown in FIG. 3.

As described, the Web-server farm is scalable and uses
ane URL to provide a single interface 10 users. For examptle,
a single domain name may be associated with many IP
addresses and each address may belong to a different Web
server. The colleclion of Web servers is transparent to the
users. In the current invention, the input vector to the input
layer consists of a function of the page requests and the page
identifier and the output layer consists of the server identi-
fication.

Fach request for a Web page is identified as a duplet <P,
R,> where 12i1=M, M being the number of requests (pages,
objects or files) serviced by the Web [arm at a predetermined
time (if the farm is clustered, M could be the number of
pages in the cluster, and the algorithm would be imple-
mented by the cluster gateway or cluster router). Prepresents
the page identifier, and R represents a function of the number
of requests for that page over a predetermined period of
time. The dispatching algorithm may deal only with a subset
of the tolal number of pages of files in the Web farm (such
as the most lrequently accessed pages), how many pages (o
use in the algorithm is design decision, and in simulations,
a range from 20 to 1000 was used. Requests are handled
through the router (which may be a server or proxy-server in
the web farm). The router will act as the dispatcher, routing
a request either to a particular server, or a cluster router lor
further handling.

FIG. 4 presents a conceptual framework of the proposed
model. Initially, we treat the weh site as a connected graph,
as shown in FIG. 4a. Viewing the web site as a connecled
graph, such as in FIG. 44, each node of the connected graph
corresponds to a web page and links between the pages arc
the path between the nodes. This directed graph can be
lranslated into a tree structure (shown in FIG. 4¢) using
some rule. For instance, a trec structure can be determined
so that an in-order traversal of this tree would output web
pages sorted in order of decreasing page requests.

The collection of Web pages can be partitioned in to
clusters in several ways. One approach is grouping the pages
such that the average hit count is similar among different
clusters 1o assist in load balancing between clusters. Apother
wdy 18 10 group pages according 1o a relationship between
page content, page links, or other interpage relationship to
assist in reducing access latency time. One way to group
pages into clusters is to partition the tree structure into left
subtree and right subtree and allocate the subtrecs to the
clusters, such as shown in FIG. 4¢, where 4 clusters are
formed. Obviously, the way clusters are formed will have an
effect on allocation of pages to servers, for hopefully,
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clustered pages will be found on the same server. For
purposes of simplification and further discussion, assume
that each page is its own cluster (that is, that a clusler has
only one page assoctated with the page ids) and has an
associated request count.

In the simplified structure shown in FIG, 45, we have one
page per cluster, and the neural network’s nputs layer’s
nodes are associated with the page identifiers, P,. The vector
input 1o the input layer, for a particular page P, will be a
vector where all entries are zero other than the K¥ entry
corresponding to the particular page request P,, and the
value for this vector component will be a function of the
number of requests for that particular page R, as measured
from some pre-determined time. In essence, we now have
the pages P and the associated request count R with the
following one page per cluster structure

{<P L R} {<PRe) . <P R
that has 1o be mapped into the server farm. Initial allocation

of clusters to the servers is based on some initial confign-
ration of clusters.

8 52 33 S5y

Cache {P,}  Cache {} Cache {P,} Cache {Pn}

The process now is to create connection to servers to “learn™
the mapping from the pages to the server and to adapt to
changes in the mupping.

Mathematical Formulation Using Compelitive Learning

The model uses a two layer neural network: layer W and
layer §. Each node in the input layer W corresponds to a
page id, and the layer 5 corresponds to server ids. Deline the
weight w,, as the connection “strength” from the page P, to
server 5, A pictorial representation of this architecture is
given in FIG. 3.

Now we can formulate the problem of assigning web
pages to the servers as a mapping for the placement of <P,,
R;>eW onlo a server space S as

Ol W—8, such that P,eW-—+8.8; (i=1, M and j=1, N)

with the condition to allocate (classify) the pages (P} such
that the pages are distributed substantially equally among
the servers (8} to ensure equitable load among the servers
and at the same lime maximize the hits in the servers” cache
in order 10 reduce latency and request service time. The
objective is to optimize two things: (1) increase the number
of hits, in the sense that a the server chosen to service the
request has a high probability that the requested page is
slored in cache, thereby accelerating the performance of the
web sile lo allow [ast response and fast loading of dynamic
web pages; and (2) to distribute the page requests among the
servers in such a fashion that the page requests are distrib-
uted cquilably among the servers.

The server S, for a given page P by using a modified
Kohonen competitive learning selection i1s chosen as {ol-
lows. Choose the server k such that

AR =W =MiIn(@isiIR ) -w,,, ) where j—=1. N (1)
Where “R,,” is the number of requests for the given page
aver a predetermined period of time (this period could be a
rolling period, and may include in the count the current
request), “f” is some function ot R, and “dis” is a distance
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measurement, as measured by some suitable metric, such as
“absolute valug” of the difference.

For instance, with two pages P, and P, and three servers
5y, 8;, and 8, and weights w,;, i~1,2, j=1,3, this modified
rule chooses the server k for page request P, (with page
request number R) as the minimum ol the following three
mumbers, (using the function f (R,)=R,) and the
metric=absolute value, or I; norm):

abs(R,-w ) and update w,;

abs(R,-w,,) and update w,,; or

abs(R,-w ;) and update w,;

As an alternative f(R;) can be a “normalized” request
count, such as f{R,)=R/ZR,.

Learning is achieved by upduling the connection strength
between page and the winning server using the general
update rule:

Awg=neighboshoed functicn+load balancing func-
tion.

For instance, a preferred vpdate rule is as follows:

Awpr ALK wip KR =Wy e a(E W =N W) (2)
The first term is the neighborhood function and the second
term is a load balancing function. Here 7, @, and K are the
paramcters that determine the strength of conirolling the
maximum hit or balancing the load among the servers, and
A(RI, wy, K) is given by

pEeT N 2

Wd, K)

{33
AR wy, K) =

here g = (R, — Wy ), Wi, K) = Z Aok ek

El

and d = (R, - W), j= L.N

Integrating equation (2) and alter some algebraic manipu-
lations, an energy function is obtained

- ¢ a—dwd2Ka R
E=qX In }.,.,,_;.ez IR (Wi W =
W:—u"}'wm)

(4

Since the update rule given in cquation (2) is of the form

AE
Oy

the date rule is a gradient descent rule for the energy function
given in equation (4).

Again, as can be seen by a close examination of equation
2, the neighberhood funclion, n A(RI, w, K) (R,-W,.),
tends to drive the updated weight (1.e. w +Aw,,) loward the
request count. The load balancing function, aK ((TW, )=-N
W), tends to drive the updated weight toward the average
weight, that is, to equalize the weights (This particular load
balancing {unction can be re-written as (aKN((ZTW_)/N-
W) or (aKN(average weighi—-W,,)).

Note, in the given example of a single page per cluster,
since only a single weight will be updated, the neighborhood
function can be a constant. If the pages are clustered, then it
may be appropriate to use a true neighborhood function,
updating those weights directed to all servers in the cluster.
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Heuristics on the Sclection of Parameters

Ideally, the neighborhood function A(Ri, w,,, K) is 1 for
i=k and falls off with the distance IR,-w,| In general, the
neighborheod is selected such that servers having related
pages are “closer” in a neighborhood (furthering the likeli-
heod of finding pages in cache). The firsl part on the right
hand side of cquation (2) pushes the selected weight w,,
toward the request count R, thereby increasing the probabil-
ily that page requests for pages that are in server S;’s cache
will be directed to the server S, (as then dis{w,,, =R ;) should
be minimum. The second term on the right of equation (2)
increases the likelihood that no one server will get over-
loaded, that is, the page requests are distributed evenly
among the servers, By a proper balance of the parameters n,
«, and K; we can direct the flow of traffic in an optimal
fashion.

n, ¢, and K are related as {ollows

no

ak

Higher n and lower oK mean we stress page hits are
emphasized over load balancing, while higher aK means
meore weight is given to load balancing. Putling =0 would
mean increasing web page hits without regard for load
balancing. In sinulations, it has been found that a high hits
arc maintained using small values of o and still have
reasonable load balancing among servers.

Simulation Using the Method for Onc Page One Cluster

An outline of the method implemented for simulation
wilh one page per cluster follows and is flowcharted on FIG.
S

1) Initialize M, N;

2) Initialize with random values the weights {wij}
between the page requests and the servers and scicet param-
eters 1 and «.

3) While (there are no more page requests)

//begin while//

3.1) {Calculate (R/ZR,, ..l and select the K which
minimizes this value

3.2) Determine whether the selected scrver is a “hit” or
“miss”. A hit is counted il the selected server was that
server that serviced the previous request for this par-
ticular page. The assumption being that thc server
servicing the previous request is more likely to have the
page still in cache memory that other servers. A “miss:
is counted if the server selected does not correspond to
the previously servicing server.

3.3) Update the server selection for this page request to
correspond to the server chosen.

3.4) Update the weight using Aw,=7(R-W, )+
(EW,)-NW,,)

Simulation Results

The characteristics of Web traffic and the self similarity
inherent in real Web traflic can be simulated by modeling the
rafic through a heavy tailed distribution of the type
P[X>x}~x* “as x—c for O<a<2. The results correspond 1o
Pareto distribution, with probability density function p(x)-
ak®x ™!, where a=0.9 and k=0.1. Data sets carresponding
to use of the Pareto distribution for page requesls are
referred to as “Non-Uniform.” For purposes of simulation,
Web traffic was also simulated using a uniform probability
distribution for the page requests, that is, each page is
equally likely to be requested.
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The neural network algorithm was compared using simu-
lations to @ Round Robin (RR), Round Robin 2 (RR2), and
a special case of Adaptive TTL algorithm., In RR2 algorithm,
a Web cluster is partitioned into 1wo classes: Normal
domains and Hot domains. This partilion is based on domain
load information. In this strategy, Round Robin scheme is
applied separately to each of the domains. In the implemen-
tation of Adaptive TTL algarithm, a lower TTL value was
assigned when a request is originated [rom hot domains and
a higher TTL value is assigned when it originates from
Normal domain, this way the skew on Web pages is reduced.

‘The simulations were run using a variety of values for the
update parameters n and o. For instance, 1 varied between
0.2 and 0.8, while o varied with the number of servers, as
1/#servers. In all cases, the results using the Neural Network
implementation were similar showing a high initial hit ratio
and converging on a hil ration of 1 as the number of requests
increased. Because the variances in the results are minor,
specific graphs for the various parameter values are not
shown. The following table gives characterislics of the
simulations.

TABLE 1

Simulation Characieristics

Sumple Size Number of Web pages ranged from 150 w
1050 and the statistics were collected at
the intervals of 50 pages each.

Statistics were collected for 4, 8, 16, 32
servers

Uniform and Non Uniform (Parcto)
Meural Network (INN) witk 1) varving
between .2 and B and & varying with the
number of serveny as 1/#serverss;

Round Robin

Round Robin 2 (RR),

and Adaptive Time-to-Live

Number of Servers

Web Pages Distribmtion Used
Algorithms

The comparison charts in the following discussions relate
only to Round Robin scheme and the Neural Nei based
algorithm. The results ¢hit ratios) for adaptive TTL algo-
rithm varied widely for different input size of Web pages and
for different input page distributions, but never ranged
higher than 0.68. In these graphs, “Hit Ratio” corresponds to
the following ration, where Hit=numnber of page requests to
the “proper server”; and Miss=number of page requests to
the “improper server”; Hit Ratio=Hit/(I1it+Miss).

As can be seen from Graph 1, shown in FIG. 6, the Neural
Network (NN) competitive learning algorithm performs
much belter as compared to Round Robin schemes (also
RR2, not shown) when input pages follow a Parcto distri-
bution. As the number of input pages increase, the algorithm
achieves a hit ratio close to 0.98, whercas the round robin
schemes never achieved a hit ratio of more than 0.4.

For the neural network algorithm, hit ratios {0.86) with a
smaller number of pages is attributed to some leaming on the
part of the algorithm, but as the algorithm learns, the hit ratio
asymptotically stabilizes to 0.98 for larger number of pages.

For uniform distribution of input pages, NN algorithm
performs similarly as for non-uniform distribution and is
much better than the Round Robin schemes (See Graph 2 in
FIG. 7).
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TABLE 2

Comparison of maximumn hit mtio achieved, input size, and servers
RR

NN N

tTniform
Nona-Uniform

(0.31, 150, 4)
(0.32, 150, 4)

(098, 1050, 4)
{0.08, 1050, 4)

. . . T 10
Round Robin scheme never achieves a hit ratio higher than

0.32, where as NN achieves hit ratios close to 0.98 (See
Table 2).

TABLE 3 s
Comparison of minimum hit ratio achieved, input sive, and servers
RR NN
Uniform (0.03, 1050, 32) (.85, 150, 32)
Nog-Uniform {0.02, 1050, 32) (0.86, 150, 32) 20

As a worsl case, NN achieves a hit ratio of as high as 0.85
for 32 servers, where as RR schemes go as low as 0.02 hit
ratio {See Table 3).

CONCLUSIONS

An analysis indicates the following results:

(1) The performance of the NN algorithm increases con-
siderably (from 0.85 hit rate to 0.98 as compared to
0.02 to 0.38 for Round Robin scheme) as the traffic
increases where as the performance of Round Robin
decreases. This result holds true irmrespective of the
number of servers. This is a result of a push of a page
towards the same server based on the learning compo-
nent in equation (2).

(2) For uniform distribution of Web page requests and at
a lower traffic rate with large number of servers (16 and
32), both the algorithms performance are acceptable.
As the traffic increases the NN algorithm performs
much betler than the RR scheme.

(3) For a non-uniform distribution (Pareto distribution),
the NN algorithm performs considerably better for
lower and higher trafic rates and the performance
irrespective of the number of servers.

30
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45

For Pareto distribution, which closely models real Web
traffic, better performance of the NN algorithm, at larger

input rate of Web pages is a very atiractive result, 50

We claim:

L. In a system having a plurality of computers each having
data sets stored thereon, a method of assigning a computer
to service a request for a data set, said method comprising
the steps of:

(a) providing a neural nelwork having at least an input

layer having J input nodes and an owtput layer having
K output nedes, each of said output nodes associated
with one of said computers, and associated weights
wi(i,k) between each said input node and each said
output node;

(b) receiving a request for particular data set;

(c) inputting to said input layer an inpul vector having an
entry R(1) at input node 1, said entry R(I) being depen-
dent upon a number of requests for said particular data
sel over a predetermined period of time and

o0

12

(d) selecting a computer associated with a selected one of
said output nodes 1o service said data request, where
said selected output node, is associated with a neigh-
borhood of other output nodes and said cutput node is
associated with a specific weight, said specific weight
selected to minimize a predetermined metric measuring
a distance between said vector entry R(I) and said
weights (j,k), where j=I, associated with said input
nade T and said output nodes; and

{(e) updating said specific weight with a predetermined
update rule, and said step of updating said specific
weight includes npdating each said weight (j.k) in said
neighborhood of said output node associated with said
specific weight; and

(f) transmitting said request for said particular data set to
said sclected computer.

2. In a system having a plurality of computers each having
data scts stored thereon, a method of assigning a computer
to service a request for a data set, said method comprising
the steps oft

(a) providing a neural network having at least an input
layer having J input nodes and an output layer having
K output nodes, each of said output nodes associated
with one of said computers, and associated weights
w(j,k} between each said input node and each said
output node;

(b) receiving a request for particular data set;

(c) inputting to said input layer an input vector having an
entry R(1) at input node 1, said entry R(1) being depen-
dent upon a number of requests for said particular data
set over a predetermined peniod of (ime; and

(d) selecting a computer associated with a selected one of
said output nodes to service said particular data set,
where said selected output node is asseciated with a
specific weight, said specific weight selected to mini-
mize a predetermined metric measuring a distance
between said vector entry R(1) and said weights (j,k),
where j=I, associated with said input node 1 and said
output nodes;

(e) updating said specific weight by modifying said spe-
cific weight with a first factor dependent said metric
distance between said vector entry R(I) and said spe-
cific weight and a second factor dependent upon a
means to balance a load across a subset of said output
nodes; and

(f) transmitting said request for said particular data set to
said sclected computer.

3. In the system of claim 1,

where sald means to balance a load across a subset of said
output nodes is dependent upon a number ol dala
requests scrviced by sauid subset of said output nodes
over said predetermined period of time divided by a
aumber of culput nodes in said subset of said outpul
nodes.

4. The system of claim 1 wherein said inpul vector's
components, other than said entry R(l) associated with said
input node 1, are of value zero,

5. In a system having a plurality of computers each having
data sets stored Lhereon, a method of assigning a computer
to service a request for a data set, said method comprising
the steps ol:

(a) providing a neural network having at least an input

layer having I input nodes and an ousput layer having
K output nodes, each of said outpul nodes associated
with one of said computers, and associated weights
(j.k) between each said input node and each said outpur
node;
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(b) receiving a request for particular data set;

(c) inputting to said input layer an input vector having an
entry R(I) at input node 1, wherein said R(T) is propor-
tional to a the ratio of a number of previous requests for
said particular data sct to a number of previous requests
for a subset of all requesied data sets, over said prede-
termined period of time;

(d) selecting a computer associated with a selected one of
said output nodes to service said request for said
particular data sel, where said selected output node is
associated with a specific weight, said specific weight
selected to minimize a predetermined metric measuring
the distance between said vector entry R(I) and said
weights(j,k), where j=I, associated with said input node
I and said oulput nodes; and

(e) updating said specific weight according to a general
update rule;

Awg=nerghborhood function+load balancing func-
tion; and

(f) transmitting said request for said particular data set to
said selected computer.

6. In a system having a plurality of computers each having
data sets stored thereon, a method of assigning a computer
to service a request for a data sel, said method comprising
the steps of:

(a) providing a neural network having at least an input

layer having J input nodes and an output layer having
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K output nodes, each of said output nodes associated
with one of said computers, and associated weights
W(j,k) between each said input node and cach said
output node;

(b) receiving a request for particular data set;

(c) inputting to said input layer an input vector having an
entry R(I) at input node I, said entry R(I) being depen-
dent upon a number of requests lor said particular data
set over a predetermined period of ime and

(d) selecting a computer associated with a selected one of
said output nodes to service said request for said
particular data set, where said selected output node is
associated with a specific weight, suid specific weight
selected to minimize a predetermined metric measuring
a distance between said vector entry R(I) and said
weights W(i,k), where j=I, associated with said input
node | and said output nodes: and

(&) updaling said specific weight according to the formula
W(ILj)=W{lj)+alpha((R(I)-w(Ij))+beta(ZW({ik)-
gama*W(L,j)), where alpha, beta and gamma are pre-
determined constants; and

(f) transmitting said request {or said particular data set 10
said sclected computer.



