(12)

United States Patent
Phoha et al,

| 0 D 0 OO R

US007730086B1

(10) Patent No.:
(45) Date of Patent:

US 7,730,086 B1
Jun. 1, 2010

(59

5

(73

(*)

(2D
(22

(63)

(51
(52)

(58)

(56)

DATA SET REQUEST ALLOCATIONS TO
COMPUTERS

Inventors: Vir V. Phoha, Ruston, LA (US);
Sitharama S. Iyengar, Baton Rouge,
LA (US); Rajgopal Kannan, Baton
Rouge, LA (US)
Assignees: Louisiana Tech University Foundation,
Inc., Ruston, LA (US); Board of
Supervisors of Louisiana State
University Agricultural and
Mechanical College on Behalf of the
Louisiana State University Health
Sciences Center, New Orleans, LA (US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 507 days.

Appl. No.: 11/670,113

Filed: Feb. 1, 2007

Related U.S. Application Data

Continuation of application No. 10/073,453, filed on
Feb. 11, 2002, now Pat. No. 7,191,178.

Int. CL

GO6N 3/02 (2006.01)

US.CL oo 707/776; 706/15; 706/25;
706/39

Field of Classification Search 707/776;
706/15

See application file for complete search history.
References Cited
U.S. PATENT DOCUMENTS

5,333,238 A 7/1994 Kakazu et al.

I_poge.
[

) = N+ 5

Wirae = cowstFID] / lotel_pugs_comat

s =L Wisify|
whers 1= 010 N5 -1 and

6,108,648 A 8/2000 Lakshmi et al.
6,792,412 B1 972004 Sullivan et al.

OTHER PUBLICATIONS

Nageswara S.V. Rao, Vladimar Protopopescu, Reinhold C. Mann,
E.M. Oblow and S. Sitharama Iyengar; “Learning Algorithms for
Feedforward Networks Based on Finite Samples™; Jul. 1996; IEEE
Transactions on Neural Networks, vol. 7, No. 4; pp. 926-940.

Vir V. Phoha and William J.B. Oldham; “Image Recovery and Seg-
mentation Using Competitive Learning in a Layered Network™; Jul.
1996; IEEE Transactions on Neural Networks, vol. 7, No. 4; pp.
843-856.

Vir Virander Phoha; “Image Recovery and Segmentation Using
Competitive Learning in a Computational Network™; Dec. 1992; A
Dissertation.

Primary Examiner—Charles Rones

Assistant Examiner—Mellissa M Chojnacki

(74) Anorney, Agent, or Firm—Jones, Walker, Waechter,
Poitevent, Carrere & Denegre

57 ABSTRACT

A method of allocation a computer to service a request for a
data set in a system having a plurality of computers. The
method is implemented on a neural network having only an
input layer having input nodes and an output layer having
output nodes, where each output node is associated with a
specific computer. Connecting the input nodes to the output
nodes are weights w(j,k). The method includes the steps of
receiving a request for data set “I” and inputting to the input
layer a vector R(I) ‘
dependent upon the number of requests for the requested
data over a predetermined period of time and
selecting a computer assignment associated with of one of
the output nodes to service the data request, where the
output node selected is associated with a specific weight
selected to minimize a predetermined metric measuring
the distance between the vector entry R(I) and the
weights(Lk).

10 Claims, 7 Drawing Sheets

}=0wNDP-§

s _cvamt ¥ 1
D) = conau|PED] 4 |

v=BwNDP-t

WLLPID] = WANIPIDY » % * (Wikraths - WHIIPIDY + 7 (miavw - HUHPIDY) J

U.S. Patent Jun. 1,2010 Sheet 1 of 7 US 7,730,086 B1

Clients

I

Q

f

HTTP | | yrTp | [HTTP | [HTTP HTTP
Server Server | | Server Server Server
Cache Cache Cache Cache

Figure 1

U.S. Patent Jun.1,2010 -~ Sheet 2 of 7 US 7,730,086 B1

OUTPUT
NODES

Figure 2

U.S. Patent Jun.1,2010 Sheet 3 of 7 US 7,730,086 B1

Figure 3

U.S. Patent Jun. 1, 2010 Sheet 4 of 7 US 7,730,086 B1

Figure 4a: P

Ps

‘ Router —|

<P;, Rp> <P, R> <P;, Rp>

; /

A Competitive Learning Web page
classification and Balancing Engine

} -
HTTP Server HTTP Server HTTP Server
Cache Cache Cache

Figure 4b

U.S. Patent Jun.1,2010 Sheet5of 7 US 7,730,086 B1

NEURAL NETWORK
ALGORITHM

Generate initial weights W(i]j]
where i=0to NS -1 and

FIGURE 5 j=0t0 NDP -1

l

- For each input page id

SN P>

total_page_count = total_page_count + 1
count[PID] = count[PID] + 1
hitratio = count[PID] / total_page count

3
Find J such that it minimizes

abs(hitratio-W|[j}{PID])
where j=0to NS -1

J

1If
(j = PSMap|PID])

A
4

— miss{PSMap|PID}} = miss{PSMap[PID}} + 1
hit[j) = hit}j] + 1 PSMap|PID] = § w :

sumw =2 W[x][y]
where x =010 NS -1 and
v=01t NDP -1

-— ¥

WHPID] = W]j}IPID] + n * (hitratlo - W{J){PID]) +y * (sumw - WIj}|PID})

STOP

U.S. Patent

Jun. 1, 2010

Sheet 6 of 7

FIGURE 6

Hit Ratio

SOOO

No of Page Requests

1050

—4—RR Performance
with 4 Servers
—&— NN Performance
with 4 Servers
O RR Performance
with 8 Servers
—B— NN Performance
with 8 Servers
~¥—RR Performance
with 18 Servers
—E— NN Performance
with 18 Servers
~3—RR Performance
with 32 Servers
—p~ NN Performance

with 32 Servers

US 7,730,086 B1

Graph 1 Performance of page placement algorithm using competitive learning (Neural
Network) versus Round Robin Algorithms (for Non-Uniform Input Data Distribution)

U.S. Patent Jun. 1, 2010 Sheet 7 of 7 US 7,730,086 B1

FIGURE 7

1

—4—RR Performance
0.9 with 4 Servers
0.8 —-8— NN Performance
: with 4 Servers
0.7 ® NN Performance
with 8 Servers
0.6 -8 RR Performance
with 8 Servers

0.5 ~&— NN Performance
with 16 Servers

-%~RR Perormance
with 16 Servers

-p—NN Performance
with 32 Servers
RR Performance
with 32 Servers

0.4
0.3
0.2
0.1
0
PR LELELRELCE S F

Graph 2 Performance of page placement algorithm using competitive learning (Neural
Network) versus Round Robin Algorithms (for Uniform Input Data Distribution)

e

US 7,730,086 B1

1

DATA SET REQUEST ALLOCATIONS TO
COMPUTERS

This application is a continuation application of U.S. appli-
cation Ser. No, 10/073,453 filed on Feb. 11, 2002, and claims
the priority benefit thereof and which is incorporated by ref-
erence herein in its entirety.

(a) TITLE OF INVENTION

Method of Allocation of Web Pages Using Neural Net-
works

(b) CROSS-REFERENCE TO RELATED
APPLICATIONS

Not applicable.

(c) STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

Not applicable.

(d) INCORPORATION-BY-REFERENCE OF
MATERIAL ON CD

Not applicable
(e) BACKGROUND OF THE INVENTION

(1) Field of Invention

The invention relates to methods of allocating page
requests to servers on a web farm and, more particularly, to
using a neural network to allocate page requests to web farm
servers.

(2) Description of Related Art

The World-Wide-Web offers tremendous opportunities for
marketers to reach a vast variety of audiences at less cost than
any other medium. Recent studies have shown that the web
consumes more Internet bandwidth than any other applica-
tion. With huge amount of capital invested in these sites, it has
become necessary to understand the effectiveness and realize
the potential opportunities offered by these services.

The number of Web sites on the Internet has grown from an
estimated 11,000 sites in 1994 to over 4 million in 2000. The
traffic load on the web site is normally measured in terms of
the number of http requests handled by the web site. Web sites
with heavy traffic loads must use multiple servers running on
different hardware; consequently this structure facilitates the
sharing of information among servers through a shared file
system or via a shared data space. Examples of such a system
include Andrews file system (AFS) and distributed file system
(DFS). If this facility is not there, then each server may have
its own independent file system.

There are four basic approaches to route requests among
the distributed Web-server nodes: (1) client-based, (2) DNS-
based, (3) dispatcher-based, and (4) server-based. In the cli-
ent-based approach, requests can be routed to any Web server
architecture even if the nodes are loosely connected or are not
coordinated. The routing decisions can be embedded by the
Web clients like browsers or by the client-side proxy servers.
For example, Netscape spreads the load among various serv-
ers by selecting a random number i between 1 and the number
of servers and directs the requests to the server www-
-netscape.com. This approach is not widely applicable as it is
not easily scalable and many Web sites do not have browsers
to distribute loads among servers. However, client-side proxy

10

15

20

25

30

35

45

50

55

65

2

servers require modifications on Internet components that are
beyond the control of many institutions that manage Web
server systems.

In the DNS based systems, by translating from a symbolic
name to an IP address, the DNS can implement a large set of
scheduling policies. The DNS approach is limited by the
constraint of 32 Web servers for each public URL because of
UDP packet size constraints although it can be scaled easily
from LAN to WAN distributed systems.

In the dispatcher-based approach, one single entity con-
trols the routing decisions and implemented through a wide
variety of algorithms. Dispatcher failure can disable the sys-
tem. However, as a centralized controller, the dispatcher can
achieve fine-grained load balancing.

The server-based approach can be viewed as a combination
of the DNS approach and the dispatcher approach. In the
server-based approach, two levels of dispatching are used: (1)
cluster DNS first assigns a client request to a Web server; and
(2) each Web server may reassign the request to any other
server of the cluster. It can achieve the fine-grained control on
request assignments as the dispatcher approach and reduces
the impact of a central dispatcher failure, but redirection
mechanisms typically increase the latency time perceived by
the users.

Only the Internet2 Distributed Storage Infrastructure
Project (I12-DSI) proposes a “smart” DNS that uses network
proximity information such as transmission delays in making
routing decisions, as proposed by M. Beck, T. Moore, “The
Internet2 Distributed Storage Infrastructure Project: An
architecture for Internet content channels” Proc. Of 3™
Workshop on WWW Caching, Manchester, England, June
1998.

Traditionally, scheduling algorithms for distributed sys-
tems are not generally applicable to control Web server clus-
ters because of the non-uniformity of load from different
client domains, high variability of real Web workload, and a
high degree of self-similarity in the Web requests. The Web
server load information becomes obsolete quickly and is
poorly correlated with future load conditions. Further,
because the dynamics of the WWW involves high variability
of domain and client workloads, exchange of information
about the load condition of servers is not sufficient to provide
scheduling decisions. What is needed is a real time adaptive
mechanism that adapts rapidly to changing environment.
However, none of the approaches incorporates any kind of
intelligence or learning in routing of Web requests.

Further, in any routing scheme, request turn around time
(time to service the request) can be greatly decreased if the
server chosen to respond to a request has the requested file in
that server’s cache memory. For instance, requests encrypted
using Secure Socket Layer (SSL) use a session key to encrypt
information passed between a client and a server. Since ses-
sion keys are expensive to generate, each SSL request has a
lifetime of about 100 seconds and requests between a specific
client and server within the lifetime of the key use the same
session key. So it is highly desirable to route the requests
multiple requests from the same client to a server be routed to
the same server, as a different server may not know about the
session key, and routing to the same server increases the
probability that the prior request is still in the systems cache
memory, further decreasing the time required to service the
user request. One proposal that combines caching and server
replication for client-side proxy servers is given by M.
Baentsch, L. Baum, G. Molter, “Enhancing the Web’s infra-
structure: From caching to Replication,” IEEE Internet Com-
puting, Vol. 1, No. 2, pp. 18-27, March-April 1997. However,
a general scheme to increase the probability that the server

US 7,730,086 B1

3

chosen to service a particular request has the request page in
cache is not presently available.

(f) BRIEF SUMMARY OF THE INVENTION

It is an object of the invention to provide a technique of
servicing file requests on a web farm to increase the probabil-
ity that the server selected to service the file request will have
the requested file in cache.

It is an object of the present invention to provide a routing
system that reduces or eliminates the need for client side
caching.

It is an object of the invention to assist load balancing
across the servers in a web farm.

The invention is a system to route requests in a web farm
through the use of a routing algorithm utilizing a neural
network with at least two layers, an input layer and an out put
layer. The input layer corresponds to the page identifiers P(j)
and a function of the number of requests for that specific page
R(P(j)) over a period of time. The outputs are the servers, S@).
A particular server S(K) is chosen to service a particular page
request P(J) by minimizing (over i), using a suitable metric,
the “distance” between R(P(J)) and w(i,J), where w(i,j) is the
set of weights connecting the input layer nodes to the output
layer nodes. The neural weight w(J,K) is then updated, using
a neighborhood function and a balancing function. The pre-
ferred update neighborhood function is defined to be a gradi-
ent descent rule to a corresponding energy function. Heuris-
tics to select parameters in the update rule that provide
balance between hits and load balancing among servers are
included.

Simulations show an order of magnitude improvement
over traditional DNS based load-balancing approaches. More
specifically, performance of our algorithm ranged between
85% to 98% hit rate compared to a performance range of 2%
to 40% hit rate for a round robin scheme when simulating real
Web traffic. As the traffic increases, our algorithm performs
much better than the round robin scheme. A detailed experi-
mental analysis is presented in this paper.

(g) BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a schematic of a general web farm using a
router to distribute requests to the servers in the web farm.

FIG. 2 shows a schematic depicting the general Kohonen
network of an input layer, an output layer, and the weights
connecting the two layers.

FIG. 3 shows a simplified Kohonen network.

FIG. 4a shows a cluster of web pages on a site.

FI1G. 4b show the framework of the invention, routing
requests through a neural network.

FIG. 5 is a flowchart showing implementation of one
embodiment of the invention.

FIG. 6 shows a graph 1 depicting the performance of page
placement algorithm using competitive learning (Neural Net-
work) versus Round Robin Algorithms (for Non-Uniform
Input Data Distribution)

FIG. 7 shows graph 2 depicting the performance of page
placement algorithm using competitive learning (Neural Net-
work) versus Round Robin Algorithms (for Uniform Input
Data Distribution)

(h) DETAILED DESCRIPTION OF THE
INVENTION

As used in this application, a Web server farm or a server
cluster, refers t0 a Web site that uses two_of more servers to

5

20

25

30

35

50

55

60

65

4

service user requests. Typically, a single server can service
user requests for the files (such as pages) of a Web site, but
larger Web sites may require multiple servers. The Web farm
servers do not have to be physically located at acommon site,
A Web faun also refers to an ISP (inteme service provider)
that hosts sites across multiple servers, or that may store
frequently requested pages across more than one server to
reduce the time to service a user request for these pages.

The servers in a web farm may have individual operating
systems or a shared operating system and may also be set up
to provide load balancing when traffic to the web site is high.
In aserver farm, if one server fails, another can act as backup.

Web farms or clusters typically have a single machine or
interface acting to distribute (dispatch) the file requests to
servers in the farm. Such a single machine will be termed a
proxy-server (proxy for the entire site), or a router. An
example of such a system is shown in FIG. 1. FIG. 1 shows an
example of this type of system, where requests may come
from various client sites 1 to the router 2, which then pools the
requests and directs them to a specific server 3. Here the
servers S, ... S, each have their own cache memory 4 and may
share acommon file system 5. Correspondingly, each of these
servers may have their individual storage. The router decides
the allocation of web page request to individual servers, and
then dispatches a particular request to a particular server. The
router may be also be a server, which services particular
requests.

Inlarge systems or sites, router tasks may be undertaken by
a plurality of machines or routers, and may include an orga-
nizational structure to allocate tasks amongst the routers. For
instance, certain pages may only be available from a sub-set
or cluster of the overall servers on the web farm. Input to each
cluster may be made simultaneously, with only the cluster
storing the requested file responding to the request. Alterna-
tively, input to a servicing cluster may be determined by a
master distributing router, which then allocates the serving
cluster based upon some algorithm, such as the neural net-
work algorithm described herein. Another way to view page
clustering is to group “related” pages into a cluster, where the
“relation” can be any predefined characteristic or character-
istics, such as related content. In this instance, each cluster
may have may have its own individual cluster gateway or
router to distribute requests across the servers in the cluster.

Each server in the farm (and can include the gateway router
itself) typically will have certain files stored in cache memory.
When the server receives arequest for a file, if the server finds
the page in cache, it returns it to the user (through the gateway
or directly to the user) without needing to forward the request
to server’s main memory or shared server file storage. If the
page is not in the cache, server main memory, or common
server memory, the server, acting as a proxy server, can func-
tion as a client (or have the router function as a client) on
behalf of the user, to use one of its own 1P addresses to request
the page from a server remote from the Webfarm. When the
page is returned, the proXy server relates it to the original
request and forwards it on to the user.

In a proxy cache such as maintained by ISP’s, clients
request pages from a local server instead of directly from the
source. The local server gets the page, saves it on disk and
forwards it to the client. Subsequent requests from other
clients get the cached copy, which is much faster (i.e. reduces
latency time) and does not consume Internet bandwidth.

A client is defined as a program that establishes connec-
tions to the Internet, whereas a Web-server stores information
and serves client requests. A distributed Web-server system or
web farm is any architecture of multiple Web servers that has
some means of spreading the client reauests to the farm’s

US 7,730,086 B1

5

servers. A session is an entire period of access from a single
client to a given Web site. A session may issue many HTML
page or file requests, Typically a Web page consists of a
collection of objects, and an object request requires an access
to a server.

The algorithm used in this invention is an aspect of com-
petitive learning that will next be generally described.

Competitive Learning—Background

In the simplest competitive learning networks there is a
single layer of output units O,, or output nodes, each is fully
connected to a set of inputs x, (input nodes) via connection
weights w;; (generally 30). A description of the algorithm
follows. Such a system is shown in FIG. 2.

Let x be an input vector (with components x;) to a network
of two layers with an associated set of weights w;. The
standard competitive learning rule is given by:

Aw* =n(x—w*)

1} being a scalar. This rule “moves” w* towards x;. The i*
implies that only the set of weights corresponding to the
winning nodes is updated. The winning node is taken to be the
one with the largest output. Another way to write this is:

Aw;=nO0fxwy),

where:

1 for i corresponding to the largest output
i = .
0 otherwise

This is the adaptive Kohonen approach. The usual definition
of competitive learning requires a winner-take-all strategy. In
many cases this requirement is relaxed to update all of the
weights in proportion to some criterion, such as in a neigh-
borhood of “winning” node.

Kohonen’s Algorithms adjusts weights from common
input nodes to N-output nodes arranged in a 2-dimensional
grid shown in FIG. 2, to form a vector quantizer. Input vectors
are presented sequentially in time and certain of the weights
are modified according to the update rule chosen, and the

neural network evolves or learns. Kohonen’s algorithm orga- -

nizes weights such that “close” nodes are sensitive to physi-
cally similar inputs. A detailed description of this algorithm
follows.

Let x;, X5, . . ., X, be a set of input vector components,
which defines a point in N-dimensional space. The output
units O; are arranged in an array and are fully connected to
input via the weights w,,. A competitive learning rule is used
to choose a “winning” weight vector w,;*, such that, for each
J:

Iwt—xl<=lw;~x;| for all i,

For instance, in the case of a two component vector X, (x, and
X,) and three outputs, with six corresponding weights w,;
i=1,3; j=1,2 (fully connecting the input vector té the outputs),
Kohonen’s algorithm chooses the minimum of the following
3 “distances” (using the 1, norm):
(X;—W1)**24+(x,— W,)**2 (and correspondingly updating
wy; and w,);
(X3—=Wq)*¥*2+(x ,~W,,)**2 (and correspondingly updating
w21 and w,,); or
(x;—W3)**24+(x,—W4,)**2 (and correspondingly updating
W,y and wj,)

6

" with the Kohonen’s update rule generally given by:

20

30

35

40

45

50

60

65

Aw,*=nh, %)W, 2™) for each

Here h(j, i*) is a neighborhood function such that h(j,i*)=1 if
j=i* but falls off with distance Ir,—r*| between units j and i*
in the output array. The winner and “close by” weights are
updated appreciably more than those further away. A typical
choice for h(j, i*) is:

A=)

where G is a parameter that is gradually decreased to contract
the neighborhood. 1} is decreased to ensure convergence.

The allocation rule used in the present invention is a modi-
fication of the traditional Kohonen Rule and will be described
in a Web farm having N servers that service the requests for
Web pages or files (files and pages are used interchangeably
to identify a data set which is accessible through the site
server/router or gateway via an identifying address) where the
servers are identified as S,, . . ., Sy, as shown in FIG. 3.

As described, the Web-server farm is scalable and uses one
URL to provide a single interface to users. For example, a
single domain name may be associated with many 1P
addresses and each address may belong to a different Web
server. The collection of Web servers is transparent to the
users. In the current invention, the input vector to the input
layer consists of a function of the page requests and the page
identifier and the output layer consists of the server identifi-
cation.

Each request for a Web page is identified as a duplet <P,
R> where 1=i=M, M being the number of requests (pages,
objects or files) serviced by the Web farm at a predetermined
time (if the farm is clustered, M could be the number of pages
in the cluster, and the algorithm would be implemented by the
cluster gateway or cluster router). P represents the page iden-
tifier, and R represents a function of the number of requests
for that page over a predetermined period of time. The dis-
patching algorithm may deal only with a subset of the total
number of pages of files in the Web farm (such as the most
frequently accessed pages); how many pages to use in the
algorithm is design decision, and in simulations, a range from
20 to 1000 was used. Requests are handled through the router
(which may be a server or proxy-server in the web farm). The
router will act as the dispatcher, routing a request either to a
particular server, or a cluster router for further handling.

FIG. 4 presents a conceptual framework of the proposed
model. Initially, we treat the web site as a connected graph, as
shown in FIG. 4a. Viewing the web site as a connected graph,
such as in FIG. 4a, each node of the connected graph corre-
sponds to a web page and links between the pages are the path
berween the nodes. This directed graph can be translated into
a tree structure (shown in FIG. 4¢) using some rule. For
instance, a tree structure can be determined so that an in-order
traversal of this tree would output web pages sorted in order of
decreasing page requests.

The collection of Web pages can be partitioned in to clus-
ters in several ways. One approach is grouping the pages such
that the average hit count is similar among different clusters to
assist in load balancing between clusters. Another way is to
group pages according to a relationship between page con-
tent, page links, or other interpage relationship to assist in
reducing access latency time. One way to group pages into
clusters is to partition the tree structure into left subtree and

US 7,730,086 B1

7

right subtree and allocate the subtrees to the clusters, such as
shown in FIG. 4¢, where 4 clusters are formed. Obviously, the
way clusters are formed will have an effect on allocation of
pages to servers, for hopefully, clustered pages will be found
on the same server. For purposes of simplification and further
discussion, assume that each page is its own cluster (that is,
that a cluster has only one page associated with the page ids)
and has an associated request count.

In the simplified structure shown in FIG. 4b, we have one
page per cluster, and the neural network’s inputs layer’s
nodes are associated with the page identifiers, P,. The vector
input to the input layer, for a particular page P, will be a vector
where all entries are zero other than the K™ entry correspond-
ing to the particular page request P,, and the value for this
vector component will be a function of the number of requests
for that particular page R, as measured from some pre-deter-
mined time. In essence, we now have the pages P and the
associated request count R with the following one page per
cluster structure

{<P.R>}... {<P,R>}...{<PR,>}
that has to be mapped into the server farm. Initial allocation of

clusters to the servers is based on some initial configuration of
clusters.

Si S, S; Sn

Cache {Pg} Cache {P;} Cache (P} Cache {Pn}

The process now is to create connection to servers to “learn”
the mapping from the pages to the server and to adapt to
changes in the mapping.

Mathematical Formulation Using Competitive Learning

The model uses a two layer neural network: layer W and
layer S. Each node in the input layer W corresponds to a page
id, and the layer S corresponds to server ids. Define the weight
w, as the connection “strength” from the page P, to server S,
A pictorial representation of this architecture is given in FIG.
3.

Now we can formulate the problem of assigning web pages
to the servers as a mapping for the placement of <P, R>eW
onto a server space S as

8,: W8, such thal PeW—SkS; (i=1, M and j=1, N)

with the condition to allocate (classify) the pages (P)) such
that the pages are distributed substantially equally among the
servers (S,) to ensure equitable load among the servers and at
the same time maximize the hits in the servers’ cache in order
to reduce latency and request service time. The objective is to
optimize two things: (1) increase the number of hits, in the
sense that a the server chosen to service the request has a high
probability that the requested page is stored in cache, thereby
accelerating the performance of the web site to allow fast
response and fast loading of dynamic web pages; and (2) to
distribute the page requests among the servers in such a
fashion that the page requests are distributed equitably among
the servers.

The server S, for a given page P,, by using a modified
Kohonen competitive learning selection is chosen as follows.
Choose the server k such that

AR, Wy =Min(disIAAR,,)-w,,1) where j=1,N (4]

Where “R,,”is the number of requests for the given page over
a predetermined period of time (this period could be a rolling

10

20

25

30

35

40

45

50

55

65

8

period, and may include in the count the current request), “f”
is is some function of R, and “dis” is a distance measurement,
as measured by some suitable metric, such as “absolute
value” of the difference.

Forinstance, with two pages P, and P, and three servers S,
S, and S, and weights wy, i=1,2, j=1,3, this modified rule
chooses the server k for page request P, (with page request
number R,) as the minimum of the following three numbers,
(using the function f (R)=R,) and the metric=absolute value,
orl, norm):

abs(R,~w,,) and update w,;

abs(R,~w,,) and update w,,; or

abs(R,~w,,) and update w,

As an alternative f(R,) can be a “normalized” request count,
such as f(R)=R/ZR,.
Leamning is achieved by updating the connection strength

between page and the winning server using the general update
rule:

Aw;,=neighborhood function+load balancing function.

For instance, a preferred update rule is as follows:

AwymMARL W IR W HOK(EW)-N W))

The first term is the neighborhood function and the second
term is a load balancing function. Here 1, @, and K are the
parameters that determine the strength of controlling the
maximum hit or balancing the load among the servers, and
ARi, wy, K) is given by

o~ 8*8/(2+K+K)

A(Ri, Wik,K) = T(dT)"

here g=(R~W,), W(d.K)=Le " 4@"K*0 angd

d=(R~W,), j=L.N 3)
Integrating equation (2) and after some algebraic manipula-
tions, an energy function is obtained

E=nKnZ, e T KoT, (w; pw;

dw; AW AW, 52 @)

Since the update rule given in equation (2) is of the form

dE
Swy

the update rule is a gradient descent rule for the energy func-
tion given in equation (4). _

Again, as can be seen by aclose examination of equation 2,
the neighborhood function, N A(Ri, w, K) (R,~W), tends to
drive the updated weight (i.e. w,+Aw,,) toward the request
count. The load balancing function, oK ((ZW,)-N W),
tends to drive the updated weight toward the average weight,
that is, to equalize the weights (This particular load balancing
function can be re-written as (0KN((TW,)/N-W ;) or (aKN
(average weight—W ,)).

Note, in the given example of a single page per cluster,
since only a single weight will be updated, the neighborhood
function can be a constant. If the pages are clustered, then it
may be appropriate to use a true neighborhood function,
updating those weights directed to all servers in the cluster.

US 7,730,086 B1

9

Heuristics on the Selection of Parameters

Ideally, the neighborhood function A(Ri, w;, K) is 1 for
=k and falls off with the distance IR~w;! In general, the
neighborhood is selected such that servers having related
pages are “closer” in a neighborhood (furthering the likeli-
hood of finding pages in cache). The first part on the right
hand side of equation (2) pushes the selected weight w,,
toward the request count R, thereby increasing the probability
that page requests for pages that are in server S;’s cache will
be directed to the server S,, (as then dis(w,.~R,) should be
minimum. The second term on the right of equation (2)
increases the likelihood that no one server will get over-
loaded, that is, the page requests are distributed evenly among
the servers. By a proper balance of the parameters 1}, o, and K;
we can direct the flow of traffic in an optimal fashion.

n, o, and K are related as follows

ne —;

aK

Higher n and lower aK mean we stress page hits are empha-
sized over load balancing, while higher oK means more
weight is given to load balancing. Putting =0 would mean
increasing web page hits without regard for load balancing. In
simulations, it has been found that a high hits are maintained
using small values of o and still have reasonable load balanc-
ing among servers.

Simulation Using the Method for One Page One Cluster

An outline of the method implemented for simulation with
one page per cluster follows and is flowcharted on FIG. 5:

1) Initialize M, N;

2)Initialize with random values the weights {wij} between
the page requests and the servers and select parameters 1) and
o.

3) While (there are no more page requests)

//begin while//

3.1) {Calculate|(R/ZR)-w | and select the K which mini-
mizes this value

3.2) Determine whether the selected server is a “hit” or
“miss”. A hit is counted if the selected server was that
server that serviced the previous request for this particu-
lar page. The assumption being that the server servicing
the previous request is more likely to have the page still
in cache memory that other servers. A “miss: {s counted
if the server selected does not correspond to the previ-
ously servicing server. '

3.3) Update the server selection for this page request to
correspond to the server chosen.

3.4) Update the weight using Aw ,=n(R~W)+ ((EW,)—
NW.)

Simulation Resuits

The characteristics of Web traffic and the self similarity
inherent in real Web traffic can be simulated by modeling the
traffic through a heavy tailed distribution of the type
P[X>x}~x"% as x—eo for O<a<2. The results correspond to
Pareto distribution, with probability density function p(x)=
ok®x~*1, where a=0.9 and k=0.1. Data sets corresponding
to use of the Pareto distribution for page requests are referred
to as “Non-Uniform.” For purposes of simulation, Web traffic
was also simulated using a uniform probability distribution
for the page requests, that is, each page is equally likely to be
requested.

15

20

25

30

35

40

10

The neural network algorithm was compared using simu-
lations to a Round Robin (RR), Round Robin 2 (RR2), and a
special case of Adaptive TTL algorithm. In RR2 algorithm, a
Web cluster is partitioned into two classes: Normal domains
and Hot domains. This partition is based on domain load
information. In this strategy, Round Robin scheme is applied
separately to each of the domains. In the implementation of
Adaptive TTL algorithm, a lower TTL value was assigned
when a request is originated from hot domains and a higher
TTL value is assigned when it originates from Normal
domain, this way the skew on Web pages is reduced.

The simulations were run using a variety of values for the
update parameters 1 and c. For instance, 1 varied between
0.2 and 0.8, while « varied with the number of servers, as
I#servers, In all cases, the results using the Neural Network
implementation were similar showing a high initial hit ratio
and converging on a hit ration of 1 as the number of requests
increased. Because the variances in the results are minor,
specific graphs for the various parameter values are not

shown. The following table gives characteristics of the simu-
lations.

TABLE 1

Simulation Characteristics

Sample Size Number of Web pages ranged from 150 to
1050 and the statistics were collected at
the intervals of 50 pages each.

Number of Servers Statistics were collected for 4, 8, 16, 32
SETVvers '

Web Pages Distribution Used ~ Uniform and Non Uniform (Pareto)

Algorithms Neural Network (NN) with 1} varing

between .2 and .8 and o varying with the
numnber of servers as 1/#servers;

Round Robin

Round Robin 2 (RR),

and Adaptive Time-to-Live

The comparison charts in the following discussions relate
only to Round Robin scheme and the Neural Net based algo-

_ rithm. The results (hit ratios) for adaptive TTL algorithm

45

50

55

60

65

varied widely for different input size of Web pages and for
different input page distributions, but never ranged higher
than 0.68. In these graphs, “Hit Ratio” corresponds to the
following ration, where Hit=number of page requests to the
“proper server”; and Miss=number of page requests to the
“improper server”; Hit Ratio=Hit/(Hit+Miss).

As can be seen from Graph 1, shown in FIG. 6, the Neural
Network (NN) competitive learning algorithm performs
much better as compared to Round Robin schemes (also RR2,
not shown) when input pages follow a Pareto distribution. As
the number of input pages increase, the algorithm achieves a
hit ratio close to 0.98, whereas the round robin schemes never
achieved a hit ratio of more than 0.4.

For the neural network algorithm, hit ratios (0.86) with a
smaller number of pages is attributed to some learning on the
part of the algorithm, but as the algorithm learns, the hit ratio
asymptotically stabilizes to 0.98 for larger number of pages.

For uniform distribution of input pages, NN algorithm
performs similarly as for non-uniform distribution and ?s
much better than the Round Robin schemes (See Graph 2in
FIG. 7).

US 7,730,086 B1

11 12
mined metric measuring a distance between said vector
TABLE 2 entry R(I) and said weights w(i,k), where i=I associated

with said input node 1 and said output nodes;
(e) updating said specific weight with a predetermined
RR NN 5 update rule where said update rule comprises updating
said specific weight with a first factor dependent on the
distance between said specific weight and said entry R(I)
and with a second factor for balancing the load across a
selected subset of said output nodes where said second

Comparison of maximum hit ratio achieved, input size, and servers

Uniform (0.31, 150, 4) (0.98, 1050, 4)
Non-Uniform (0.32, 150, 4) (0.98, 1050, 4)

1 % *
Round Robin scheme never achieves a hit ratio higher than 10 factor comprises beta (Emw(I,m))-.—gamma WLk,
0.32, where as NN achieves hit ratios close to 0.98 (See Table where beta and gamma are constants;
2‘) ¥ ; and (f) transmitting said request for said particular data set

: to said selected computer.

2.The method of claim 1 wherein said selected output node
TABLE 3 15 is associated with a neighborhood of other output nodes, and
Comparison of minimum hit ratio achieved, input size, and servers said step (e) of updating further includes the step of updating
each said weight w(i,k) associated with each said output
RR NN nodes in said associated neighborhood with a first function of
Uniform (0.03, 1050, 32) (0.85, 150, 32) ‘ the di.stance petween safjd entry R(I) apd SZ}id w.eight w(i,k)
Non-Uniform 0.02, 1050, 32) (0.86, 150, 32) 20 associated with each said output node in said neighborhood.
3. A method of assigning a computer to service arequest for

a data set, said method comprising the steps of:
As a worst case, NN achieves a hit ratio of as high as 0.85 for (a) providing a neural network having only two layers, an
32 servers, where as RR schemes go as low as 0.02 hit ratio input layer having J input nodes and an output layer
(See Table 3). 25 having K output nodes, each of said output nodes asso-
ciated with one computer out of a series of computers,
CONCLUSIONS and associated weights w(i,k) between each said input

N node and each said output node;

An analysis indicates the following results: ' (b) receiving a request for particular data set;

-(1) The performance of the NN algorithm increases con- 30 (c) inputting to said input [ayer an input vector having an
siderably (from 0.85 hit rate to 0.98 as compared to 0.02 entry R(I) at input node I, said entry R(I) being depen-
to 0.38 for Round Robin scheme) as the traffic increases dent upon a number of requests for said particular data
where as the performance of Round Robin decreases. set over a predetermined period of time;

This result holds true irrespective of the number of serv- (d) selecting a computer associated with a selected one of
ers. This is a result of a push of a page towards the same 35 said output nodes to service said data request, where said
server based on the learning component in equation (2). selected output node is associated with a specific weight,

(2) For uniform distribution of Web page requests and at a said specific weight selected to minimize a predeter-
lower traffic rate with large number of servers (16 and mined metric measuring a distance between said vector
32), both the algorithms performance are acceptable. As entry R(I) and said weights w(i k), where i=I, associated
the traffic increases the NN algorithm performs much 40 with said input node I and said output nodes; said
better than the RR scheme. selected output node being associated with a neighbor-

(3) For a non-uniform distribution (Pareto distribution), the hood of other output nodes;

NN algorithm performs considerably better for lower (e) updating said specific weight and each said weight

and higher traffic rates and the performance irrespective w(ik) associated with output nodes in said associated

of the number of servers. 45 neighborhood of said selected output node with a pre-
ForPareto distribution, which closely models real Web traffic, de.termmed u pdan_: rulg where-saJd ypdate rule com-
better performance of the NN algorithm, at larger input rate of prises updating said weights w(ik) with a first function

- Web pages is a very attractive result. depen@ent on the distance l_)etwe_en said wenght w(i,k)
i and said entry R(I); wherein said first function com-

We claim: : 50 prises exp(~(RA)-w(i,k))?) for each w(ik) in said

1. A method of assigning a computer to service a request for neighborhood;

a data set, said method comprising the steps of: and (f) transmitting said request for said particular data set

(a) providing a neural network having only two layers, an to said selected computer. :
input layer having J input nodes and an output layer 4. The method of claim 1 wherein inputting to said input
having K output nodes, each of said output nodes asso- ss layer an input vector having an entry R(I) at input node I,
ciated with one computer out of a series of computers, wherein said R(I) is proportional to a the ratio of a number of
and associated weights w(i,k) between each said input previous requests for said particular data set to a number of
node and each said output node; previous requests for a subset of all requested data sets over

(b) receiving a request for particular data set; said predetermined period of time.

(c) inputting to said input layer an input vector having an 60 5. A system comprising a plurality of computers, each
entry R(I) at input node I, said entry R(I) being depen- having data sets stored thereon, one of said computers execut-
dent upon a number of requests for said particular data ing a method to service a request for a data set, said method
set over a predetermined period of time and comprising the steps of:

(d) selecting a computer associated with a selected one of (a) providing a neural network having only two layers, an
said output nodes to service said data request, where said 65 input layer having J input nodes and an output layer
selected output node is associated with a specific weight, having K output nodes, each of said output nodes asso-

said specific weight selected to minimize a predeter- ciated with one computer out of a series of computers,

US 7,730,086 B1

13

and associated weights w(i,k) between each said input
node and each said output node;

(b) receiving a request for particular data set;

(¢) inputting to said input layer an input vector having an
entry R(I) at input node 1, said entry R(I) being depen-
dent upon a number of requests for said particular data
set over a predetermined period of time;

{d) selecting a computer associated with a selected one of
said output nodes to service said data request, where said
selected output node is associated with a specific weight,
said specific weight selected to minimize a predeter-
mined metric measuring a distance between said vector
entry R(1) and said weights w(i,k), where i=I associated
with said input node I and said output nodes;

(e) updating said specific weight with a predetermined
update role where said update rule comprises updating
said specific weight with a first factor dependent on the
distance between said specific weight and said entry R(I)
and with a second factor for balancing the load across a
selected subset of said output nodes where said second
factor comprises beta*(Z, ,w(l,m)-gamma*(w(Lk)),
where beta and gamma are constants;

and (f) transmitting said request for said particular data set
to said selected computer.

6. The system of claim 5 wherein said system further com-

prises a proxy server, and said method is implemented on said
proxy Server.

7. The system of claim 5 wherein said plurality of comput-
ers is organized into a web farm of servers.

8. The system of claim 7 wherein said system further com-
prises a router and said method is implemented on said router.

9. A computer readable storage medium containing com-
puter executable code for performing a method of assigning a

5

10

15

20

25

14

computer from a system of computers to service a request for
a data set, said method comprising the steps

(a) providing a neural network having only two layers, an
input layer having J input nodes and an output layer
having K output nodes, each of said output nodes asso-
ciated with one of said computers, and associated
weights w(i k) between each said input node and each
said output node;

(b) receiving a request for particular data set;

(c) inputting to said input layer an input vector having an
entry R(I) at input node 1, said entry R(I) being depen-
dent upon a number of requests for said particular data
set over a predetermined period of time;

(d) selecting a computer associated with a selected one of
said output nodes to service said data request, where said
selected output node is associated with a specific weight,
said specific weight selected to minimize a predeter-
mined metric measuring a distance between said vector
entry R(I) and said w(i,k), where i=] associated with said
input node I and said output nodes;

(e) updating said specific weight with a predetermined
update rule where said update rule comprises updating
said specific weight with a first factor dependent on the
distance between said specific weight and said entry R(I)
and with a second factor for balancing the load across a
selected subset of said output nodes where said second
factor comprises beta*(Z,,(I,m)—gamma*(w(l,k)),
where beta and gamma are constants;

and (f) transmitting said request for said particular data set
to said selected computer.

10. The method of claim 2, wherein said first function

comprises exp(—(R(I)—-w(i,k))l)/(Zjexp(—Dis(R(I}—w(i,j)))
for each w(i,j) and w(l k) in said neighborhood.

* * *® % *

