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Figure 4: Zig-zag sampling procedure from an image
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Figure 11: Amplitude of the real part of the Fourier frequency spectrum (8 points,

ignoring the redundant symmetric part) of the window presented in Figure 7.
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Figure 12: Amplitude of the real part of the Fourier frequency spectrum (8 points,

ignoring the redundant symmetric part) of the window presented in Figure 8.
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METHOD TO STABILIZE A MOVING
IMAGE

COMPUTER PROGRAM LISTING APPENDIX

Attached hereto and incorporated by reference is the
computer program listing appendices. The appendices, in
accordance with 37 CFR 1.96, are contained on a single
compact disk, submitted in duplicate. Each disk submitted
has two folders: (1) Window based image stabilization; and
(2) Zig-Zag based image stabilization.

A directory of each folder follows:

Zig-Zag based image stabilization:

Created size and name of files
Feb. 19, 2003 07:51 AM 2,426 class__mers.m
Feb. 19, 2003 07:51 AM 5,041 c_cluster.m
Feb. 19, 2003 07:51 AM 334 ¢_fftm
Feb. 28, 2003 03:49 PM 1,741 ¢_main.m
Feb. 19, 2003 07:51 AM 7,508 ¢_mer.m
Jun. 07, 2003 10:34 AM 18,029 image_ comparison.m
Mar. 03, 2003 03:10 PM 1,359 kmeans.m
Mar. 22, 2003 04:54 PM 2,916 main_ script.m
Feb. 27, 2003 04:38 PM 264 mark p.m
Feb. 19, 2003 07:51 AM 1,851 p_file3.m
Window based image stabilization:
Created size and name of files
Jun. 07, 2003 10:34 AM 18,029 Image_ comparison.m
Mar. 03, 2003 03:10 PM 1,359 kmeans.m
Jul. 01, 2003 04:49 PM 24,754 main_ script.m

The program is written in MATALB from Mathworks, Inc.
and can be executed on an IBM-PC formatted machine
operating with Windows XP and Matlab version 6.5.

FIELD OF INVENTION

The invention relates to methods of stabilizing an image,
and more particularly to images viewed and recorded
through stable microscopes (such as a confocal microscope)
when the observed subject may be moving in a non-linear
fashion.

BACKGROUND OF THE INVENTION

White light, real-time, scanning confocal microscopes
have been used in clinical and investigative opthalmology
for many years, and the applications of this technology to
patients have expanded and include refractive surgery and
use to assist in diagnosis of diseases. In clinical use, a
camera can be attached to the confocal microscope, to record
the images, and attached to a display device to display the
images on a screen in real-time. The microscope and
attached camera are generally stable and do not move.
However, the eye being observed through the confocal
microscope by the ophthalmologist is not necessarily stable
or stationary. The subject’s eye may move due to the
inability of the subject to maintain a totally steady gaze, or
due to movements of the subject causing the subject’s eyes
to move in the observed field. Additionally, portions of the
eye being observed can move due to intrinsic biological
factors, such as involuntary movements. Such movements
may be non-linear in the sense that a movement in one area
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of the observed field may not be reflected in another area of
the observed field. The movement may be localized to a
portion of the observed field and other movements reflected
in another area of the observed field. These types of move-
ments make the interpretation of the observed images dif-
ficult.

In the confocal microscope system, the camera and micro-
scope are stabilized with minimal movements, but the
observed eye is constantly moving. Even “minor” move-
ments can become a significant problem as the microscope
will magnify the image of the movement. At magnification
levels of around 500x that is needed to visualize cellular
level details within the eye, it is apparent that a minor eye
movement can prevent significant visualization difficulties
to the ophthalmologist trying to observe the non-linear
moving image field.

Image stabilization has been addressed in the prior art
from the standpoint of stabilization of camera movement
(such as in hand held video recorders) to prevent a blurring
or movement in the imaged field. Additionally, stabilization
of cameras on moving platforms observing a relatively still
object has been addressed. However, stabilization of the
imaged field to account for undesired movement of the
imaged subject, particularly a non-linear type of movement,
has not been examined and stabilization in this sense pre-
sents added difficulties. Non-linear movement is used in the
sense that movement in one portion of the observed field
may not reflect movement in another portion of the observed
field. Prior art stabilization techniques generally apply a
global shift or translation of the image, that is, each portion
of'the image receives the same “correction.” With non-linear
movement of the subject in the observed or imaged field,
global corrections are insufficient to effect image stabiliza-
tion. A technique is needed to identify and quantify changing
areas of an image, and to correct those areas of the image to
account for the changes.

SUMMARY

The invention is a process to compare two digital images
and to identify objects in each image. After object identifi-
cation, object descriptors are formed. The object descriptors
of the objects in one frame are compared to those of objects
in the second frame, allowing the tracking of an object in the
two frames. The movement of each tracked object within the
two frames is quantified, and the second frame is corrected
to account for the object’s movement.

OBIJECTS OF THE INVENTION

An object of the invention is to enable real-time process-
ing of a series of digital images of a subject to account for
movement of the subject in the recorded images.

It is an object of the invention to correct for non-linear
movements of the observe subject in a series of digital
images of the subject.

It is an object of the invention to identify and track
moving objects in a series of digital images.

It is an object of the invention to quantify the movements
of a number of objects in a series of digital images, and to
correct for the movement.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1: Is a flow chart showing the method through
formation of object descriptors

FIG. 2: Is a flow chart showing the method steps involved
in tracking objects by comparing the descriptors, and cor-
recting the frames with an error vector
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FIG. 3: Is a diagram showing the computer readable
medium with stored instructions 2000.

FIG. 4: Zig-zag sampling procedure from an image.

FIG. 5: Portion of the time-domain representation of the
zig-zag sampled signal from frame in FIG. 1.

FIG. 6: Window extraction procedure from the one-
dimensional zig-zag signal.

FIG. 7: A sample window of size 16 (window number
14000) in time-domain.

FIG. 8: A consecutive sample window of size 16 (window
number 14001) in time-domain.

FIG. 9: Time-domain representation of the portion of the
zig-zag sampled signal.

FIG. 10: Graph displaying the amplitude of the real part
of the Fourier frequency spectrum of the signal presented in
FIG. 9. Note the skewed energy spectrum in the plot.

FIG. 11: Graph displaying the amplitude of the real part
of the Fourier frequency spectrum (8 points, ignoring the
redundant symmetric part) of the window presented in FIG.
7.

FIG. 12: Graph displaying the amplitude of the real part
of the Fourier frequency spectrum (8 points, ignoring the
redundant symmetric part) of the window presented in FIG.
8.

FIG. 13: Graph displaying the amplitude of the real part
of the Fourier frequency spectrum (8 points, ignoring the
redundant symmetric part) of the window presented in FIG.
7 after preserving first few frequencies.

FIG. 14: Graph displaying the amplitude of the real part
of the Fourier frequency spectrum (8 points, ignoring the
redundant symmetric part) of the window presented in FIG.
8 after preserving first few frequencies.

FIG. 15: Error vector computation using local-zoning
procedure.

FIG. 16: Table showing the corresponding percentage of
MER match for each of the zones described in FIG. 15.

FIG. 17: Graph displaying the effect of increasing number
of Fourier frequency coefficients on the total number of
MERs generated for similarity match.

FIG. 18: Graph displaying the effect of increasing number
of Fourier frequency coeflicients on the total time of execu-
tion of the similarity matching procedure.

FIG. 19: Graph displaying the effect of Cluster size on the
number of MERs and execution time.

FIG. 20: Graph displaying the effect of Window size on
the number of MERs and execution time.

FIG. 21: Graph showing MER formation with the 1-D
signal.

DETAILED DESCRIPTION OF THE
INVENTION

The invention relates to processing digital images, either
an analog image that has been digitized or one captured with
a digital camera. As described, the images reflect a digital
video image taken through a confocal microscope (29
frames/sec). However, the technique is not limited to use
with confocal microscope images. Other types of digital
images where the observed field is moving non-linearly can
benefit from this technique. Other suitable types of images
include various medical images, images captured through
telescopes, and other microscope images. The invention as
described includes the step of correction or stabilization of
adjacent images to account for movement of identified and
matched objects in adjacent frames. However, if object
identification and tracking in a series of images is all that is
required, correction for object movement may not be needed
or desired.
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The invention can be operated in “real-time” or in a post
processing mode on a completed set of images. Real-time
processing has constraints placed upon the technique due to
limitations in the ability to process or crunch the images in
accordance with the technique and maintain an output
corrected display that appears to be a real-time video
sequence of images. For this reason, a series of depopulation
steps are included. As processing capabilities increase, these
depopulation steps become less needed. In a post processing
mode, the real-time constraints are not as critical, and the
depopulation maybe eliminated. The following description
will be based upon a “real-time” processing, where “real-
time” is understood as follows.

Each individual “image” is a digital representation of the
field of view in the focal area of the microscope at a
particular point in time. Each image is a two dimensional
matrix of pixels, with each pixel having an associate inten-
sity level or gray level. The images are “black and white”
images. The images are displayed in a monitor (and may be
recorded) for viewing by the attending physician. The
images are viewed as a time sequence series of sequential
images. ‘“Real-time” processing of the images entails
depopulation of the time series of images and processing and
modification of the depopulated series prior to display.
Hence, there is a delay between the time an image is
captured by the microscope and the time the processed
image is displayed on the monitor. For real-time processing,
the delay can be minimized with suitable depopulation
techniques employed on the raw images and in the process-
ing techniques, and the use of high speed processors to
execute the stabilization technique.

Finally, the technique as described is employed on “black
and white” grayscale images (where the recorded field is a
single variable, such as light intensity). However, the tech-
nique can be employed on images where a variety of object
aspects (such as color components, hue components, etc.)
are sampled and recorded. In this event, appropriate modi-
fications should be undertaken in the object recognition
portion of the technique, if it is desired to use additional
recorded aspect fields to help assist in object identification.
One suggested modification would be to utilize a multidi-
mensional data transform in technique 2 to account for the
additional recorded aspects, or to create a series of 1-D
signals in technique 1, each corresponding to a recorded
image aspect. The additional recorded aspects can also be
use to utilized images in correction or stabilization.

The techniques will be described in two general configu-
rations, a 1-D signal configuration and a 2-D signal con-
figuration, using the following analytical framework:

A.1 Image Capturing

A.2 Signal Synthesis

A.3 Signal Partition

A.4 Object Recognition

A.5 Formation of Object Descriptors

A.6 Identify Corresponding Objects, Object Tracking

A.7 Formation of Error Vector

A.8 Stabilize Frame Correction)

Each of the above steps is explained as follows.

I FIRST EMBODIMENT

A 1-D Signal Representation

A.1 Image Capturing
The raw unstabilized confocal videos are obtained at the
rate of 29 frames/sec. Although theoretically one can extract
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and process 29 frames from a one-second long video, it is
not desirable for the following reasons:

(1) The drifting or destabilization of objects in these
frames may not be prominent in subsequent frames,
and performing a computational stabilization procedure
on subsequent frames is not an efficient use of
resources.

(2) Experiments have shown that the stabilization tech-
nique employed on adjacent subsequent frames is more
susceptible to Gaussian or white noise.

For these reasons, it is more efficient to depopulate the
sampled frames. The sample rate should be fine enough to
keep the presentation displayed on the monitor from jittering
due to too coarse depopulation. The actual depopulation can
vary with the application, and one acceptable rate was to
depopulate the frame date set by a factor of 6 (use every 7%
frame in the video) to result in a display rate of approxi-
mately 4 frames/sec.

The following should be noted from the given frames:

(1) The objects in these frames are not clearly marked,
demarcated or explicit.

(2) The objects move within the frame in subsequently
sampled frames.

(3) Each of these objects may move in different directions
in subsequently sampled frames.

(4) Each of these objects may scale (due to differential
optical illumination) and rotate (to intrinsic movement
of these objecs independent of the resident frame) in
subsequent sampled frames.

(5) Some objects might be missing in subsequent sampled
frames.

(6) Some objects might be new in subsequent sampled
frames.

A.2 Signal Synthesis

A digital imaged frame is a two-dimensional signal in the
form of a matrix. This two-dimensional matrix represents
pixels attributed by row and column numbers with an
intensity (0 . . . 255) value associated with the pixel. From
this two-dimensional signal, a one-dimensional signal is
extracted. In one embodiment, a zig-zag transform is taken
of the two-dimensional image. In the zig-zag transform, the
values of the two-dimensional signals (the signal intensity
associated with the matrix position) are re-posted into a
sequential series (step 90, FIG. 1), where the mapping from
two-dimensions to one-dimensions is taken along a zig-zag
path through the 2-D dataset, one particular transform is
shown in FIG. 4. Other 2-D to 1-D mappings could be used,
such as reposting along rows or columns. From an image of
size mxn, the resulting linear 1-D sequence or signal has a
length of mn. FIG. 5 presents a portion (Pixel number 4100
to 4800) of the zig-zag sampled one-dimensional signal
from the image.

A3 Signal Partition

The next step is to partition the resulting 1-D signal. This
step groups the signal sequence into overlapping windows of
fixed size (step 100, FIG. 1). FIG. 6 depicts the windowing
process showing the first two windows (W1 and W2)
formed, where the window size is 16 units long, and the
overlap is 15 units. The window size or length and the
degree of overlap are parameters that are adjustable based
upon the data.

Guidelines for choice of window size include the follow-
ing heuristics:

(1) Too small a window size may bring in discontinuities

in object boundaries.

20

25

30

35

40

45

50

55

60

65

6

(2) Too small a window size may increase the dimension-
ality of data, hence making the computational proce-
dure slow and inefficient.

(3) Too small a window size might reduce the correctness
of the assumption that the signals within the window
display skewed energy spectrum.

(4) Too large a window size may lead to ignoring certain
objects that are small, yet important.

(5) Too large a window size may lead to object boundaries
that are overlapping, hence making the object recog-
nition procedure non-deterministic.

As can be seen, window size is dependent upon object size.
Factors that will influence the window size include:

(1) Source of data: A smaller window is suggested for a
relatively stable image in contrast to large window size
for destabilized images.

(2) Format of data: a larger window size in a grayscale
image may perform equally well as a small window
size in a colored image.

(3) Rate of frame sampling: window size is inversely
proposal to the rate of sampling of frames.

For the confocal grayscale images examined, a window
length of w=8 has yielded suitable results with an overlap of
7 (w-1). For the following results, a window size of 16 was
utilized with an overlap of 15. For convenience, the 1-D
formed signal will be considered a signal in the “time”
domain, and each window will be referred to as representing
a series or sequence in the “time-domain.”

A.4 Object Recognition
The next step involves recognition of “objects™ in the 1-D
signal. This step involves identifying windows having simi-
lar “characteristics” or “features” and grouping those win-
dows with similar characteristics into an “object.” The
following computational steps are involved in the feature
recognition and aggregation into an “object”:
(a) Transform the Windowed Data Sets: The window data
itself could be used to identify windows with common
features (such as through cross-correlations or other
processes to look for similarities in time sequences).
However, it is believed more efficient to use a fast
transform algorithm of the time series data (step 200
and 300, FIG. 1), such as using a discrete Fourier
transform (DFT) as coded in a fast Fourier transform
(FFT). The reasons for selecting DFT are as follows:
(1) DFT is computationally fast to compute (n log n).
(i1) DFT is an Fuclidean distance preserving transfor-
mation.

(iii) DFT is an orthonormal transformation.

(iv) DFT is a symmetric transformation (hence,
memory efficient).

Other transform techniques can be utilized, such as discrete
cosine transform, slant transform, various wavelet trans-
forms, etc. The object of the transform is to identify common
or similar properties of the time windows in a different
domain. While the transform attributes are present in the
time-domain data, the transform simply makes it easier to
identify and group or cluster those windows displaying a
desired common behavior (such as common stable harmonic
behavior).

The transformed Fourier points will be clustered to iden-
tify windows having similar frequency or harmonic content.
However, it may not be necessary to utilize all the Fourier
coeflicients. The Fourier transform is a complex transform,
having real and imaginary parts. For each window of length
“w” a DFT of size “w” can be utilized. FIG. 7 and FIG. 8
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demonstrate two windows of interest extracted from the
zig-zag one-dimensional signal extracted from the frame
depicted in FIG. 1. FIG. 9 and FIG. 10 represent the real part
of their corresponding Discrete Fourier Transform of size
w=16 each (the window length).

Most of these windows display a skewed energy spec-
trum, with the majority of the energy contained in the first
few Fourier coefficients. The amplitudes of the real part of
the transformed signal for the windows presented in FIG. 7
and FIG. 8 are shown in FIGS. 11 and 12. FIG. 13 and FIG.
14 show the coefficients that contain approximately 80% of
the energy of these windows. To increase computation
efficiency, it may be desirable to preserve only the first few
frequency coefficients in the remaining steps of the “object”
recognition, that is to depopulate the Fourier coefficients by
truncation. For the remaining discussion we will assume the
Fourier coefficients have been depopulated and will assume
for discussion purposes that the first 4 (k=4) coefficients
were used (step 400, FIG. 1).

Each window of size w now is represented by its Fourier
coeflicients (with or without depopulation). Each coefficient
of the transform is a complex number with corresponding
real and imaginary parts. If k is the number of Fourier
coeflicients that have been chosen to represent the window
in Fourier domain, a window becomes a point in 2k dimen-
sional “feature” space.

(b) Cluster the Fourier Coefficients in Feature Space: The
next step is to cluster the points (the transformed
window sequence) in 2k dimensional feature space
(step 600 FIG. 1). The points are clustered by requiring
that they are “close” in feature space.

Distance between points is measured by a suitable metric
(Euclidian metric, L2 metric, etc.) and the cluster neighbor-
hood is established by requiring that the distance (“DIS”)
between any two clustered feature points is no greater than
a chosen constant distance. A cluster represents windows
having “close” frequency content. Note that some windows
may not fall in a cluster (in which event, there is no “object”
associated with that window). Once the clusters are formed,
the next step is to identify “objects” within each cluster, that
is, those windows that are close spatially in the time-domain.
Each cluster may be composed of a number of objects.

(c) Identify Objects: Objects are those windowed series
that are contained in the cluster and are spatially
adjacent, that is, an object is a portion of the 1-D signal
meeting certain criteria. Two windows (a) and (b) are
spatially adjacent if: (1) window (a) and window (b)
have at least one data point in common (some overlap);
or lacking an overlap, (2) the ending point of window
(a) is adjacent the starting point of window (b) in the
time-domain (step 700, FIG. 1).

Hence, at the completion of this step, sets of windows
from the 1-D signal have been organized into “objects,”
where the windows in a particular object display similar
frequency characteristics (or similarity in the selected trans-
form attributes) and are overlapping or adjacent in the
time-domain. Each object thus represents a contiguous por-
tion of the 1-D time-domain sequence, that is, each object is
contained in series of windows where each window in the
series is adjacent to at least one other window in the series,
where this series of windows was contained in a single
cluster. This set of windows is considered a set of adjacent
image windows.

A.5 Form Object Descriptors

The next step is to identify characteristics or descriptors
of these objects (step 900-1000, FIG. 1). These descriptors
will be used to match or track objects in adjacent frames.
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The windowed time sequences associated with each
“object” are enclosed in a convex hull enclosing the region
(step 902, FIG. 1). It is desired to use the same convex hull
shape for every object, such as triangle, square, or rectangle,
in order to extract common descriptors later used. Other
common enclosing shapes could be used, such as circles or
ellipses, which technically are not convex hulls. A preferred
convex hull is the Minimum Enclosing Rectangle (MER),
which is a rectangle of minimum area that encloses a shape.
FIG. 21 shows a portion of the 1-D signal enclosed in a
MER. A MER can be uniquely identified by the following
geometric descriptors:

(1) Orientation Angle: The angle which the length of the
MER makes with the horizontal x-axis in Euclidean
space.

(i1) Aspect Ratio: The ratio of breath/length.

(ii1) Length of the MER,

(iv) Center position of the MER in x-position and y-po-
sition in feature space.

For each object, the technique determines the MER in the
time-domain that encloses the time sequence windows that
comprise the object and determines the geometric descrip-
tors for the calculated MER (step 903, FIG. 1). These
descriptors will be employed for positional and shape error
vector in subsequent frames as described in the next section.

While descriptors were formed from the shape of the
MER enclosing the object, descriptors from the object itself
could be utilized, bypassing the need for enclosing in a
common shape. For instance, object features could include
object center of gravity, object center, longest straight line
through the object, and angle of the longest line.

A.6 Identify Corresponding Objects, Object Tracking

After obtaining the MER descriptors for all objects in all
clusters for a particular frame (considered the “reference
frame”), the above procedure A2-AS is repeated for the next
adjacent frame (“next adjacent frame” is one from the
depopulated frame set). Each frame should be using the
same “distance” constant for clustering and use the same
frequency depopulation criteria (if used) so that the proce-
dure in the reference frame and the adjacent frame are
identical. After completing step A2-AS for the adjacent
frame, each frame will have a series of objects with respec-
tive MERs and descriptors. The numbers of MERSs in the two
frames do not have to match. The procedure now tries to
identify an object in the reference frame with a correspond-
ing object (a matching object) in the adjacent frame, that is,
to track objects in the two frames. The descriptive MER
information is used as matching criteria. The process com-
pares these descriptors (or a subset of interest) for the MERs
in the reference frame with MER descriptors in the subse-
quent adjacent frame [in one embodiment, the comparison is
undertaken in the increasing order of the MER occurrence
using the center position of the MER (in the time sequence)
as the ordering criteria]. (Step 1100-1200 FIG. 2) In one
embodiment, the descriptors are compared in the following
order:

(1) Aspect Ratio (scale invariant);

(2) Orientation Angle (rotational invariance); and

(3) Length of the MER.

The order can change, and not all descriptors need be used
for the comparison.

Objects in two different frames are considered as corre-
sponding or as representing the same feature if the descrip-
tors are within a designated “error” of each other. The error
represents the distortions of the subsequent frame with
respect to the reference frame. In one embodiment, a per-
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centage of 20% of the reference value was allowed for the
error—hence, if all three criteria are such that 0.8xvalue
(reference descriptor)<value (subsequent descriptor)<l.2x
value (reference descriptor), the objects were identified as
the same feature. Obviously, the error percentage does not
have to be the same for each descriptor, and indeed, each
error could be weighted and a match declared if the weighted
error was within the allowed tolerance. Some objects may
not be matched, in which case, no error vector will be
computed for that object or its associated MER.

A.7 Formation of Error Vector

For the objects matched between frames, error vectors are
computed locally (step 1300, FIG. 2). The error vectors are
calculated in terms of delta-transform, given as follows:

Delta-Orientation Angle=Orientation angle of the
matched object in frame 1-Orientation angle of
matched object in frame 2.

Delta-Aspect Ratio=Aspect ratio of the matched
object in frame 1-Aspect ratio of matched
object in frame 2.

Delta-Length=Length of the matched object in frame
1-Length of matched object in frame 2.

Delta-Position=Fuclidean distance between the cen-
ter position of the matched MER in frame 1
and frame 2.

A.8 Stabilization or Correction of the Subsequent Frame

The computed object error vectors are employed to “cor-
rect” the image in frame 2 (step 1500, FIG. 2) as follows.
The image in frame 2 is divided into generally non-over-
lapping zones of a particular size, such as 25x25 pixels. The
error vector for each zone is calculated by averaging the
MER object error vectors for those objects that “appear” in
each zone. Because a MER or an object corresponds to a
rectangle in the time-domain, a MER (and the associated
object) represents a portion of the signal in the frame that
appears along a contiguous portion of the zig-zag path. The
object itself may represent a smaller portion of the zig-zag
path than the MER. Hence, a MER or object can “appear”
in more than one zone as the zig-zag path can cross zones.
A MER error vector (the object, or portions thereof) must be
assigned to a particular zone. Several methods can be used
to map or assign a particular object’s MER error vector to a
zone. For instance, one can assign the MER error vector to
(a) that zone that includes the MER center point; (b) the zone
with the greatest percentage of the pixels of the MER (or
alternatively, the object) if the MER appears in several
zones; or (c) assign a weighted MER error vector to each
zone containing a part of the MER, for instance, weighted by
the percentage of the MER within the particular zone. The
two-dimensional zone (a portion of the image frame) is then
corrected using the averaged error vector. Corrections can be
undertaken for translations, rotations, scaling or other types
of MER descriptors. Not all errors need be accounted for and
corrected, for instance, rotational errors might be ignored in
certain types of data sets.

Obviously, the correction or stabilization technique may
require reposting the “stabilized” zone to pixel locations, in
which case a suitable interpolation algorithm could be
utilized, such as bilinear, spline, etc., to effect the needed
re-posting.

The same procedure is applied to the remaining zones of
the image frame—each zone is correspondingly corrected by
its computed error vector.
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Final Frame Tune Up

If the corrected zones have regions that overlap, the
overlapped regions are averaged together. For zones of the
image without MER error data (for instance, no objects were
found in this zone), the zone can be copied to a corrected
image or a background can be inserted in the corrected
image, such as a “black” background or a background
reflecting the average intensity in the frame.

Repeat Procedure for the Next Frame (Step 1600, FIG. 2)

The procedure is then repeated for frame 3, using frame
2 as the new reference frame. In correcting frame 3, it is
preferred that the uncorrected or unstabilized frame 2 be
used as the reference frame to avoid the propagation of
errors in the stabilization process.

FIG. 15 demonstrates the correction of adjacent frames,
where only translation errors were accounted for. FIG. 16
shows the percentages of MER matched in zones described
in FIG. 15. As can be seen, the percentage of matched MERs
in each zone differs.

In real-time processing, it may be desired to correct both
frames (the reference frame and the subsequent frame) by %2
the error vector values, that is, to spread the error between
the two frames instead of assigning all movement error to
the subsequent frame.

B. Parameter Sensitivity in the 1-D Embodiment

Analysis was performed on confocal image video to
explore parameter sensitivity. Since the degree of object
matching between frames is proportional to the number of
discovered unique MERs from an image frame, it is impor-
tant to measure and evaluate the effect of various parameters
of our computational steps on the number of unique MERs
obtained for the variations in the selected values of the
parameters.

B.1 Effect of Number of Fourier Frequency Components
Considered for Clustering on the Number of MERs Gener-
ated

FIG. 17 demonstrates the effect of increasing the number
of Fourier frequency coeflicients on the total number of
MERs generated. The clustering is done in 2N dimensional
space, where N is number of frequency coefficients obtained
from FFT. As N is varied (keeping other algorithm para-
metric constraints constant, such as window size, cluster size
and distance between the windows), the number of MER’s
generated varies with changes in the number of Fourier
frequency components selected. The window size for these
results was 16 and the clustering Euclidean distance used
was 500. As can be seen in FIG. 17, as N is increased, the
MER’s generated (that corresponds to the number of objects
found in feature space) increases. This is due to the fact that
when N is increased by a single value the dimensions for
clustering increases by 2. Due to addition of more dimen-
sions, some of the feature points forming clusters in 2N
dimension space split up and form separate clusters in
2(N+1) dimension space. But at the same time the MER’s
obtained have better relative stationary harmonic behavior.

B.2 Effect of Number of Fourier Frequency Components
Considered for Clustering on the Time of Execution of
Similarity Matching

FIG. 18 demonstrates the effect of increase in number of
frequency components for clustering on the time of execu-
tion of the similarity matching process. Clustering accounts
for a substantial amount of the run time for the stabilization
process, and the time spent in clustering depends on value of
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N. Since the images under consideration have a skewed
energy spectrum, most of the energy is present in the lower
frequency initial coeflicients of the FFT. Hence, there is little
to be gained in increasing the value of N significantly. By
increasing N, more discrimination in objects occurs, but at
the stabilization process run time increases. For the confocal
images examined, N=2 was suitable for clustering as the
quality of MER’s at N=3 or 4 did not change significantly.
The choice of the number of Fourier components, and the
depopulation used, if any, will be data dependent.

B.3 Effect of Cluster Size on Number of MERs and Execu-
tion Time

FIG. 19 demonstrates the effect of size of cluster on the
number of MERs and execution time of the matching
process. The number of MERs generated depends on the
cluster size. For this analysis, the window size was 16 and
N=2. As the clustering size increases the number of MERs
obtained reduces. At cluster size of 1000, the numbers of
MERs obtained are almost negligible. Cluster size also
affects the time used by the algorithm greatly; as the cluster
size is increased, the algorithm takes less time to execute. By
increasing the cluster size (or the cluster criteria), fewer
MERs are obtained and run time or execution time is
reduced. If there is a large number of clusters, more com-
putation is needed to generate the MERs and manipulate the
MER descriptors. A large number of MERs utilize additional
memory, which is not desired. However, if there are too few
MERs, the possibility of missing out some important fea-
tures in the image increases. Obviously, if the technique is
used to stabilize images after image acquisition (that is, not
in “real-time”) the concern with algorithm speed becomes
less of an issue.

B.4 Effect of Window Size on the Number of MERs and the
Execution Time for Similarity Search

FIG. 20 shows the effect of increase in window size to the
number of MERs generated and the similarity matching
execution time. In this analysis, N=2 and cluster size of 700
(the Euclidian distance in the Fourier domain). In varying
the window size, it was found that an increase in window
size increased the run time for Fourier transformation, and
the number of MER’s generated also increased.

I SECOND EMBODIMENT
Using a 2-D Signal

This embodiment is similar to that of the 1-D signal
embodiment, and the description will concentrate on the
differences between the two embodiments.

A.1 In this embodiment, the steps of Image Capturing (A.1)
is identical to the 1-D embodiment. Frame data may be
depopulated as needed.

A.2 The signal synthesis step in this embodiment is lacking
as this embodiment retains the 2-D image as the working
signal.

A3 Signal Partition

For each frame, partition the frame into overlapping 2
dimensional windows (step 100 FIG. 1), where the windows
are aligned along a path through the frame. For instance, one
embodiment utilized the following horizontally orientated
path for traversing the frame (a type of zig zag):
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In this embodiment, an 8x8 pixel window was utilized with
adjacent windows having an overlap of 5 pixels with the
proceeding window, where the overlap is in the direction of
movement along the path through the frame, hence, it is not
necessary to transform into a one dimensional sequence,
thus step 90, FIG. 1 can be eliminated. The window size or
length and the degree of overlap are parameters that are
adjustable based upon image characteristics.

A.4 Object Recognition

(1) Transform each window.

Each window is transformed using a 2-D transform, such
as a 2-D Fourier transform (step 200-300, FIG. 1). Other
transform techniques can be utilized, such as discrete cosine
transform, slant transform, various wavelet transforms, etc.
Again, the object of the transform is to identify common or
similar desired properties (such as common harmonic
behavior) of the time windows in a different domain where
the desired property is more readily recognized. Depopulate
the Fourier coefficients, if desired (step 400, FIG. 1). In one
embodiment, the first three low frequency 2-D Fourier
coeflicients were utilized (retaining the DC component, and
the first “x” frequency coefficient and the first “y” frequency
coefficient). Each depopulated Fourier representation of a
window is considered a point in k dimensional feature space.
With three Fourier components, k is 3x2 (if k is considered
a space of complex points) or 3x2x2, if k is considered a
space of real points. Each transformed window is associated
with the window location, such as by recording window
number or window location (such as the window center,
window four corners, etc.) (step 500 FIG. 1).

(i1) Cluster the points in feature space (step 600, FIG. 1).

Within this feature space, analysis is undertaken to iden-
tify or cluster those points (which represent the transformed
windows) which are “close” in the chosen metric or other
restraint chosen.

One clustering technique utilized was K-Means cluster-
ing. See, e.g., J. Han and M. Kamber, Data Mining: Con-
cepts and Techniques, pp. 349-351, Morgan Kaufmann,
2000 (hereby incorporated by reference). K-Means cluster-
ing can be undertaken with or without a metric threshold.
The preferred K-Means clustering is one without a metric
threshold. This allows for the cluster neighborhood size to
vary in the feature space. Each formed K-Means cluster is
discrete, that is, there is no overlap—a window cannot be in
two different K-Means clusters. Other types of clustering
algorithms could be used, such as a Euclidian distance
constraints similar to the constraint used in the 1-D signal
embodiment. When this clustering step is finished, the points
in feature space are identified with a cluster. Again, not all
points may fall in a cluster.

(ii1) Identify the “Objects” in the 2-D (x,y) Domain
contained in each Cluster.

An object is a portion of the signal in the (x,y) domain that
is contained within windows that transform into the cluster
under consideration, and those windows are “close” to each
other in the (x,y) domain. An object is thus a portion of the
image meeting certain criteria. A window is close to another
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window if the two either share common pixels (i.e., overlap
in the (x,y) domain) or are adjacent in the (x,y) domain:
window (a) is adjacent to window (b) if at least one point or
pixel of window (a) is adjacent to at least one point or pixel
of window (b). (Note, this measure of closeness could also
be used in the first embodiment.) Other definitions of
“closeness” could be utilized, such as center of gravities of
the windows are within a given distance of each other, etc.
(step 700, FIG. 1).

An object within a cluster hence represents a portion of
the image composed of a series of windows where (1)
windows that are “close” in the image frame, and by nature
of the clustering; and (2) the signal within the windows
display similar harmonic or frequency behavior.

Note that one cluster may have a series of objects, but
each object can appear in only one cluster (as the clusters are
distinct and discrete).

A.5 Form Object Descriptors (Step 900, FIG. 1)

(1) For each 2-D Object, find the Minimum Enclosing
Rectangle (again, other enclosing figures can be utilized
(step 902, FIG. 1). Note that the MER can, and usually will,
include windows that were not identified with a particular
object, and MER’s can overlap from object to object.

(ii) For each MER, compute the choses MER character-
istics or descriptors (which can include object descriptors)
(step 903, FIG. 1) such as:

(a) Geometric center for MER (average (x,y)) of pixels

composing the MER);

(b) Average of the window centers of the MER;

(c) Size of object in the MER (pixels in object/pixels in

MER) or size of MER (pixels in MER/pixels in frame):

(d) Aspect ratio of MER (Length/Width):

(e) Length of MER;

(f) Orientation angle of the MER; and

(g) Average 2D Frequency composition of Object. For

each object, compute the average 2D—{frequency com-
position of the windows that compose the object,
including DC. Thus, if three Fourier coefficients were
used for each window, the average frequency compo-
sition will also have three components, each compo-
nent being an average for those windows in the object
(step 1000, FIG. 1).

A.6 Identify Corresponding Objects, Object Tracking

This step attempts to match or track objects between
adjacent frames, that is, to identify an object in the adjacent
frame which corresponds to (is similar to) an object in the
reference frame. An object in frame n (object(n)) is consid-
ered to be corresponding or to track or “match” an object in
frame n+1 (object(n+1)) if the object or MER descriptors are
“close” (step 1100-1200, FIG. 2). Again, closeness depends
on the selected metrics and the allowable “error.” For
instance, some metrics that could be compared are:

(1) DIS (avg. freq obj (n)-avg freq obj(n+1))<constantl
(say 20%), (close in frequency content, this constraint
can be more restrictive that that used in clustering);

(ii) DIS (geometric center object(n)-geometric center
object (n+1)<constant2, (close in center location); and

(iii) DIS (% frame object (n)-% frame object (n+1))
<constant3, (close in size).

Note not all objects will be matched with a corresponding
object, as new objects may be appearing in the adjacent
frame, and previous objects may be disappearing in adjacent
frames (adjacent in the depopulated frame set) etc.
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A.7 Formation of Error Vectors

For the corresponding objects, compute an error vector or
difference vector using the chosen tracked characteristics,
such as geometric center (X,y) position differences, scale
differences (aspect ratios), orientation angle, etc. (step 1300-
1400, FIG. 2)

A .8 Stabilize or Correct (Step 1500 or Step 1501, FIG. 2)
Each object comprises a set of pixels in the (x,y) plane.
These object sets will be individually corrected.

(a) Discrete Objects (No Overlap)

For each object in frame n+1 which has no overlap with
other matched objects in frame n+l, the pixels which
comprise the object will be adjusted by applying the differ-
ence error vector to these pixels, such as translation (change
in geometric center), scale (change in aspect ratio—a shrink
or expansion about the geometric center), and other error
characteristics thought relevant. Generally, no correction is
made for frequency content (other than a possible scaling
correction). With rotation or aspect ratio modifications, pixel
locations may have to be reposted, as the “new” location
may not lie on a pixel position. In this case, a 2-D interpo-
lation scheme can be used to move a point to a pixel
location, such as through biquadratic interpolation, bilinear
interpolation, spline interpolation, or other interpolation
schemes.

(b) Objects with Overlap

If there is an overlap between objects in frame n+1, the
errors could be averaged in the overlapped region and the
overlapped region corrected by the averaged error. However,
an alternative procedure is to partition overlapping objects
into new discrete non-overlapping objects, that is, to rede-
fine the objects. The procedure is as follows: for overlapping
object a and object b, the overlapped region will be assigned
to one object (either a or b) and removed from the remaining
object. The overlapped portion is a percentage of object a
and a percentage of object b (such as by pixel count, area,
etc.). Assign the overlapped region to the object where the
overlap forms a larger portion of the object. That is, assign
the overlapped region to the object where the region makes
a larger contribution to the area or composition of the object.

(c) Objects with No Corresponding Object or Match

Not all objects identified in frame n+1 will have corre-
sponded or be matched with an object in frame n. One
procedure would be to simply copy or repost these objects
to the new image, with no modifications. Another procedure
is to correct this area with an error vector which is the
“average” of the surrounding objects. Two procedures were
implemented.

Find objects “close” to unmatched objects (say geometric
distance from object<constant). For these close objects,
identify those objects which have associated error vectors
(i.e., the objects that were matched with objects in the prior
frame).

Procedure 1—take the errors from the close objects and
weights the error by the distance between the close object
and the unmatched object, and applies the averaged
weighted error to the unmatched objects pixels. For instance,
for translation correction, compute [(translation error of
nearby object 1)/(distance to objectl)], [(translation error of
nearby object 2)/(distance to object 2)], . . . and apply a
translation of the average of the weighted errors as the
translation correction for the unmatched object’s pixels.

Procedure 2—Take the errors for the close matched
objects and weight these error vectors with the normalized



US 7,359,563 Bl

15

area of the objects associated with the errors. For instance,
assume object 1, object 3 and object 10 are close to
unmatched objects to be corrected and that object 1 is 576
sq pixels in size, object 3 is 192 sq pixels in size, and object
10 is 448 sq pixels in size. Error vectors associated with
object 1 will be weighted by 576/(576+192+448) or 0.47,
object 3’s errors will be weighted by 0.16, and object 10 by
0.37. The error to be applied to the unmatched objects pixels
is the sum of the errors of the weighted error vectors.

Final Frame Tune Up

For areas of the frame that have overlapped corrected
objects, the technique can average the overlapped areas,
either a weighted or non-weighted average. For areas of the
frame that have no objects present, a black background
could be posted in the processed image, area could be
reposted with no alterations, or the average intensity of
image for the frame to this area could be posted (an average

“gray”).

Repeat procedure for next frame (steps A3-AS8) using uncor-
rected frame n+1, with frame n+2 (step 1600 FIG. 2).

Although the present invention has been described in terms
of specific embodiments, it is anticipated that alterations and
modifications thereof will no doubt become apparent to
those skilled in the art which are intended to be included
within the scope of the following claims.

The invention claimed is:

1. A method for correcting a series of digital images for
distortions caused by movement of the imaged subject,
comprising the steps of:

(D) selecting a first image:

(a) partitioning said first image into a series of first
image windows, each of said series of first image
windows containing a two-dimensional portion of
said first image;

(b) transforming said series of first image windows into
a transform domain having transform attributes
using a selected transform;

(c) clustering said transformed first image windows
into a series of first image clusters, where each of
said transformed first image windows in a particular
one of said series of first image clusters reflects
similar transform attributes;

(d) for each of said first image clusters, identifying
subsets of said first image windows representing
adjacent first image windows that, when trans-
formed, are contained in said first image cluster, each
of said subsets of said first image windows consid-
ered an first image object; and

(e) for each of said first image objects, form a series of
first image object descriptors;

(II) selecting a second image:

(a) partitioning said second image into a series of
second image windows, each of said series of second
image windows containing a two-dimensional por-
tion of said second image;

(b) transforming said series of second image windows
into a transform domain using said selected trans-
form;

(c) clustering said transformed second image windows
into a series of second image clusters, where each of
said transformed second image windows in a par-
ticular one of said series of second image clusters
reflects similar transform;

(d) for each of said second image clusters, identifying
subsets of said second image windows representing
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adjacent second image windows that, when trans-
formed, are contained in said second image cluster,
each of said subsets of said second image windows
considered a second image object; and

(e) for each of said second image objects, forming a
number of second image object descriptors, each
having a value;

(II) for each of said first image objects, identify said
second image objects which are corresponding objects,
where a particular one of said second image objects is
a corresponding object if at least one of said second
image object descriptor’s values are within a predeter-
mined distance criteria, using a preselected metric, to
said corresponding first image object descriptor’s
value;

(IV) for each of said corresponding objects, forming an
associated error vector representing the distance
between a subset of said corresponding object’s asso-
ciated first image object’s descriptors and a correspond-
ing subset of said second image object’s descriptors;
and

(V) generating a first corrected image from said second
image, portions of said first corrected image corre-
sponding to said corresponding objects modified by at
least one component of said corresponding objects
associated error vector.

2. A computer readable medium having encoded thereon
a series of machine executable instructions which when
executed by a computer processing system, causes the
system to perform the method of claim 1.

3. A method for correcting a series of digital images for
distortions caused by movement of the imaged subject,
comprising the steps of:

(D selecting a first image and converting said first image

into a one dimensional first signal:

(a) partitioning said first signal into a series of first
signal windows, each of said series of first signal
windows containing a portion of said first image;

(b) transforming said series of first signal windows into
a transform domain having transform attributes
using a selected transform;

(c) clustering said transformed first signal windows into
a series of first signal clusters, where each of said
transformed first signal windows in a particular one
of said series of first signal clusters reflects similar
transform attributes;

(d) for each of said first signal clusters, identifying
subsets of said first signal windows representing
adjacent first signal windows that, when trans-
formed, are contained in said first signal cluster, each
of said identified subsets of said first signal windows
considered an a first signal object; and

(e) for each of said first signal objects, form a series of
first signal object descriptors;

(IT) selecting a second image and converting said second
image into a one-dimensional second signal:

(a) partitioning said second signal into a series of
second signal windows, each of said series of second
signal windows containing a portion of said second
signal;

(b) transforming said series of second signals windows
into a transform domain using said selected trans-
form;

(c) clustering said transformed signal windows into a
series of second signal clusters, where each of said
transformed second signal windows in a particular
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one of said series of second signal clusters reflects
similar transform attributes;

(d) for each of said second signal clusters, identifying
subsets of said second signal windows representing
adjacent second signal windows that, when trans-
formed, are contained in said second signal cluster,
each of said subsets of said second signal windows
considered an second signal object; and

(e) for each of said second signal objects, forming a
number of second signal object descriptors, each
having a value;

(IIT) for each of said first signal objects, identify said
second signal objects which are corresponding objects,
where a particular one of said second signal objects is
a corresponding object if at least one of said second
signal object descriptor’s values are within a predeter-
mined distance criteria, using a preselected metric, to
said corresponding first signal object descriptor’s
value;

(IV) for each of said corresponding objects, forming an
associated error vector representing the distance
between a subset of said corresponding object’s asso-
ciated first signal object’s descriptors and a correspond-
ing subset of said second signal object’s descriptors;
and

(V) generating a first corrected image from said second
image comprising the steps of:

(a) partitioning said second image into a series of
two-dimensional zones;

(b) assigning each of said corresponding objects to at
least one of said zones;

(c) for each said zone, form the average zone error
vector by averaging said associated error vectors of
said corresponding objects assigned to said zone; and

(d) modity each of said zones based upon at least one
component of said zone error vector.

4. A computer readable medium having encoded thereon
a series of machine executable instructions, which when
executed by a computer processing system, causes the
system to perform the method of claim 3.

5. The method of claim 1 wherein step I(b) and II (b) is
accomplished using the Fourier transform.

6. The method of claim 1 wherein step 1 (¢) and II (c.)
includes clustering by K-means clustering, and said similar
attributes comprise frequency content.

7. The method of claim 1 wherein step 1 (e) and II (e)
includes the step of enclosing each said first single object in
a first convex hull creating a set of first convex hulls, and
enclosing each said second signal object in a second convex
hull forming s set of second convex hulls.

8. The method of claim 7 wherein said each said first
convex hull forms an enclosing rectangle and each said
second convex hull forms an enclosing rectangle and object
descriptors comprise an aspect ratio of said enclosing rect-
angle, an orientation angle of said enclosing rectangle, a
length of said enclosing rectangle, a center position of said
enclosing rectangle, and combinations thereof.

9. The method of claim 8 wherein said enclosing rect-
angles are minimum enclosing rectangles.

10. The method of claim 1 wherein said at least one of
said second image object descriptor’s value is within about
20% of said first image object descriptors values, using a
preselected metric.

11. The method of claim 8 wherein said step V includes
the step of

(a) partitioning said second image into a series of two-
dimensional zones;
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(b) assigning each of said corresponding objects to at least
one of said zones;

(c) for each said zone, form the average zone error vector
by averaging said associated error vectors of said
corresponding objects assigned to said zone; and

(d) modify each of said zones by said zone error vector,

and where said average zone error vector comprises at least
one of an orientation angle error associated with said aver-
age of said enclosing rectangles orientation angles, a length
error associated with said average of said enclosing rect-
angles lengths, a center position error associated with said
average of enclosing rectangles center positions, and an
aspect ratio error associated with said average of said
enclosing rectangle aspect ratios, and combinations thereof.

12. The method of claim 8 wherein said two objects are
within said predetermined distance criteria in step I1I if said
predetermined distance criteria is that said second signal
object descriptor value is within about 20% of said first
signal object descriptor’s corresponding value, using said
predetermined metric.

13. The method of claim 11 wherein said step of modi-
fying each said zone by said zone error vector comprises
transforming each said zone with a transform comprising at
least one of said operations of scaling, translation, and
rotation using based upon said aspect ration error, center
position error, rotation error, or said length error.

14. The method if claim 3 wherein said step of converting
said first image and said second image into a one dimen-
sional first signal and one dimensional second signal com-
prises transforming said first image and said second image
using a zig-zag transform.

15. The method if claim 14 wherein said zig-zag trans-
form includes reposting about either columns or rows of an
image.

16. The method of claim 3 wherein step I (¢) and II (c)
includes clustering by K-means clustering, and said similar
attributes comprise frequency content.

17. The method of claim 3 wherein step I (e) and II (e)
includes the step of enclosing each said first single object in
a first convex hull creating a set of first convex hulls, and
enclosing each said second signal object in a second convex
hull forming s set of second convex hulls.

18. The method of claim 17 wherein said each said first
convex hull forms an enclosing rectangle and each said
second convex hull forms an enclosing rectangle and object
descriptors comprise an aspect ratio of said enclosing rect-
angle, an orientation angle of said enclosing rectangle, a
length of said enclosing rectangle, a center position of said
enclosing rectangle, and combinations thereof.

19. The method of claim 18 wherein said enclosing
rectangles are minimum enclosing rectangles.

20. The method of claim 18 wherein said average zone
error vector comprises at least one of an orientation angle
error associated with said average of said enclosing rect-
angles orientation angles, a length error associated with said
average of said enclosing rectangles lengths, a center posi-
tion error associated with said average of enclosing rect-
angles center positions, and an aspect ratio error associated
with said average of said enclosing rectangle aspect ratios,
and combinations thereof.

21. The method of claim 18 wherein said step of modi-
fying each said zone by said zone error vector comprises
transforming each said zone with a transform comprising at
least one of said operations of scaling, translation, and
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rotation based upon said aspect ration error, center position 24. The method of claim 3 wherein said digital images
error, rotation error, or said length error. reflect intensity or grey level.
22. The method of claim 1 wherein said digital images 25. The method of claim 24 where said digital images
reflect intensity or grey level. represent recordations of confocal microscope images.

23. The method of claim 22 where said digital images 5
represent recordations of confocal microscope images. ¥ % % % %



