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HIDDEN MARKOV MODEL (“HMM”)-BASED
USER AUTHENTICATION USING
KEYSTROKE DYNAMICS

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of the earlier filing date
of U.S. Provisional Patent Application No. 60/938,001, filed
May 15, 2007, and incorporated herein by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This technology was developed in part with support from
an Army grant under contract DAAD 19-01-1-0646 awarded
by the United States Army Research Office. The Government
has certain rights in the technology.

FIELD

The invention relates to computer security. More specifi-
cally, the invention relates to methods for identifying and/or
authenticating computer users.

BACKGROUND

Computers often contain, or control access to, valuable
assets. Therefore, user authentication (confirming that a user
is who he says he is) is an important component in computer
system operations. User authentication methods have tradi-
tionally been based on passwords; the security of such sys-
tems depends mainly on the secrecy of the passwords. Pass-
words are the most familiar example of a “know something”
security method: access rights are granted to anyone who
knows the password. Drawbacks of “know something” sys-
tems are well-understood: an attacker can subvert the system
by guessing the password, or by forcing, tricking or colluding
with a legitimate user to reveal the secret.

Another common type of security system is based on legiti-
mate users having a physical token such as a key or identifi-
cation badge (a “have something” system). These systems are
also well-understood, and can be subverted by an attacker
who steals or copies a physical token. (Tokens are often made
difficult to copy to improve the security of such systems.)

Combination systems (“have something, know some-
thing”) require a prospective user to present a physical token
and to prove knowledge of a secret such as a Personal Iden-
tification Number (“PIN”) or password. Such systems may be
somewhat more secure, but are still vulnerable to the same
sorts of attacks, because physical tokens and secrets can both
be separated from their rightful owners and used by an impos-
tor.

A number of biometric security systems have been devel-
oped to tie access rights more closely to an authorized person,
rather than anyone who simply possesses the authorized per-
son’s objects or secrets. For example, fingerprints, iris and
retina images, voice recognition and hand geometry have all
been used to identify individuals in connection with a security
system. These approaches can provide varying levels of con-
fidence that a person is who he claims to be. Unfortunately,
many of these systems depend on uncommon and/or expen-
sive hardware to perform the measurements, so they may not
be suitable for use in large-scale, heterogeneous environ-
ments.

One biometric authentication method that has attracted
some attention for its flexibility, discriminative power and
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2

lack of reliance on specialized hardware is based on keystroke
timing measurements. It has been observed that individuals
type differently from one another, and that typing style
(speed, pressure, rhythm, intercharacter delays, and so on;
together, “keystroke dynamics”) carries information that can
be used to identify the typist. (Note that this information is
present regardless of the text being typed—there is no
requirement that a secret password be used.)

Keystroke dynamics systems based on statistical and neu-
ral-network models have been proposed (e.g., Young, Cho),
but implementations suffer from computational complexity
and operational drawbacks that limit their acceptance. For
example, a statistical or neural authentication system may
take an unacceptably long time to identify a user, require
excessive reconfiguration to add or remove a user to a data-
base of authorized users, or demand unrealistically consistent
typing skills to distinguish between users. A keystroke-dy-
namics-based authentication system that improves these
areas may be of interest.

SUMMARY

A keystroke dynamics-based identification and authentica-
tion system using a modified Hidden Markov Model
(“HMM”) to analyze keystroke data is proposed. Techniques
for reducing computational complexity and improving iden-
tification accuracy and authentication accuracy are described.

BRIEF DESCRIPTION OF DRAWINGS

Embodiments of the invention are illustrated by way of
example and not by way of limitation in the figures of the
accompanying drawings in which like references indicate
similar elements. It should be noted that references to “an” or
“one” embodiment in this disclosure are not necessarily to the
same embodiment, and such references mean “at least one.”

FIGS. 1A and 1B show a flow chart outlining operations
according to an embodiment of the invention.

FIG. 2 shows several parameters of a Hidden Markov
Model (“HMM™).

FIG. 3 shows a partial HMM for analyzing keystroke
dynamics observations.

FIG. 4 shows a full HMM state transition matrix and an
optimized, modified state transition matrix according to an
embodiment of the invention.

FIG. 5 outlines the creation of an HMM using an optimized
state transition matrix.

DETAILED DESCRIPTION

Embodiments of the invention collect a plurality of key-
stroke dynamics measurements of a user and build a model
that can be used later to estimate a probability that a sample
string was typed by the same user. This can form the basis of
a computer authentication system, as follows: models are
built for plurality of legitimate users (e.g., “Alice,” “Bob” and
“Charles.”). Subsequently, a user X (who may claim to be one
of'the legitimate users) provides a typing sample. The system
can determine which of Alice, Bob or Charles is most likely to
have produced the sample, and also the probability that X is
who he or she claims to be, given the typing sample he or she
produced. Based on these two probabilities, the system can
provide a confidence measure that X really is Alice, Bob or
Charles. Access decisions (or further security measures) can
be implemented according to the confidence measure. The
models prepared by an embodiment have some of the prop-
erties of traditional Hidden Markov Models (“HMMs”), but
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are constructed using specialized techniques that produce the
models with significantly reduced computational effort.
These techniques can also be applied to other datasets,
thereby permitting HMMs to be used for data analysis in other
fields.

FIGS. 1A and 1B contain a flow chart outlining operations
according to an embodiment of the invention. A plurality of
keystroke dynamics observations are collected (110). A num-
ber of different measurements of keyboard activity can be
used (e.g., key press duration, key release-to-subsequent-key
press delay, key overlap, key pressure), but in the present
disclosure, only key press duration will be considered. Each
observation consists of key press durations for a sequence of
keys; there are as many key press duration elements, as there
are characters in the typed string. As a concrete example, the
plurality of keystroke dynamics observations may be key
press durations for a user performing six trials typing the
32-character string “master of science in computer science.”
(Spaces are ignored in this example.) This would produce six,
32-element vectors containing key press durations (mea-
sured, for example, in milliseconds).

Next, for each of a range of numbers ofhidden states (120),
each of the vectors is used to produce a Hidden Markov
Model (“HMM”) having the corresponding number ot hidden
states per observation vector element (130). Each HMM is
defined by a number of parameters, discussed below, which
are referred to collectively as “A”. Subscripts on A refer to the
observation vector and the number of hidden states per obser-
vation element in the model. For example, A, is the HMM
produced from the first observation vector, assuming two
hidden states per observation element.

The HMMs for the observation vectors and a particular
number of hidden states (i.e., A, for all values of m and one
value ofn) are consolidated into a single HMM using a variant
of the Baum-Welch expectation maximization (“EM”) algo-
rithm (140). This produces the best HMM to model the obser-
vations using that number of hidden states. The best HMMs
for each of a number of hidden states are compared, and the
one that best fits the observation vectors is selected (150).
This process is referred to generally as “training.” (EM is an
iterative process, and “best” means “the best model identified
during the iterations performed,” not “the best model that
could possibly be constructed to describe the observations.”)

Operations 110-150 may be repeated for observation vec-
tors of other users, resulting in a “best” HMM to fit each
user’s typing (160). This portion of the process is called the
enrollment phase. Note that the HMM corresponding to each
user is independent of the other users HMMs. Each HMM
depends only on the observation vectors collected while the
user repeatedly types a single, well-known string, and the
subsequent training process. Therefore, new users can be
added to the system at any time (there is no need to re-visit
already-enrolled users and re-train their HMMs). Also, users
can be removed from the system at any time, simply by
deleting the corresponding HMM:s.

Later, an authentication phase occurs: a candidate user
identifies himself or herself (170) and provides a sample
authentication vector by typing the well-known string (180).
Two probabilities are computed based on the HMMs pro-
duced by the enrollment phase. First, the HMM that gives the
highest probability of modeling the system that produced the
authentication vector is identified, and the corresponding
probability is noted (190). Second, the HMM corresponding
to the user the candidate claims to be is used to compute the
probability that that user produced the authentication vector
(195). Finally, a ratio between these two probabilities is com-
puted (198) and used to direct subsequent authentication pro-

20

25

30

35

40

45

50

55

60

65

4

cedures (199). For example, ratios exceeding a first threshold
may provide a high degree of confidence that the candidate
user is who he claims to be. In that case, the user may be
granted corresponding access privileges. Ratios falling
within a second range may provide less confidence, so
reduced privileges may be granted, a supplemental authenti-
cation process may be triggered, or extra monitoring of the
user’s session may be performed. An example of a supple-
mental authentication process is a query for additional infor-
mation that the claimed user should know. The system could
request the claimed user’s (spouse’s) maiden name or a
child’s date of birth. Only if the candidate user’s typing of the
authentication vector is suspect would he be subjected to this
additional scrutiny.

Hidden Markov Models are often used to infer conditions
in systems where a stochastic process with the Markov prop-
erty is known (or believed) to exist, but the details of the
process are not subject to observation. Instead, only external
features of the system (or elements that may be somehow
related to the system) can be observed. Generally speaking, a
HMM answers the question, “what is the probability that the
system modeled by this HMM would operate so as to produce
the observed sequence?” HMMs find application in, for
example, speech recognition, optical character recognition,
natural language processing and bioinformatics.

A Hidden Markov Model is defined by a set of five param-
eters: S, V, A, B and &, which are described with reference to
FIG. 2. (A complete set of parameters is denoted by the
shorthand A, as mentioned above.) S is the set of states (210).
The modeled system is assumed to be in exactly one of the
states at any time, and to progress from state to state as time
goes on. The system’s progress through the state space cannot
be directly observed, but the set of observation symbols V
(220) provide clues or indications regarding the system’s
progression.

The system’s state is presumed to have the Markov prop-
erty: atransition from state s, to s, happens with a probability
that is independent of the states that occurred before s,,. State
transition probability matrix A (230) encodes the probability
ofthe system moving fromstate s, to s,. For example, in state
ss, the system has a 50% probability of remaining in the state
(233), a 20% probability of changing to state s, (235), and a
30% probability of changing to state s (237).

Matrix B (240) connects the internal states s, with the
external observations v , providing a probability that an exter-
nal observation will occur when the system is in each state s,.
Forexample, in state s, (243), there is a 30% probability (245)
that observation v, (247) will be made.

7 (250) is a matrix that provides probabilities for the sys-
tem’s initial state: &, indicates the probability that the system
starts in state s,.

The well-known Baum-Welch algorithm provides a pow-
erful, but computationally expensive, method for adjusting
the parameters A, B and 7w to maximize the probability that an
HMM with a given number of states S assigns to a set of
training observations. A, B and  can be initialized to random
values (or to values estimated based on an understanding of
the modeled system and the significance of various states),
and iteratively refined through the Baum-Welch algorithm to
produce a tuned or “trained” HMM. However, the keystroke
dynamics example described in relation to FIG. 1, and other
applications described below, have a property that permits the
creation of a Hidden Markov Model with much less effort. In
fact, the computational complexity of the Baum-Welch algo-
rithm is on the order of N*T> (“O(N>T>”), N is a number of
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states in S and T is a number of observations), whereas the
optimized algorithm presented below is only O(N°T), an
improvement of T2,

Returning to the keystroke-dynamics authentication
example discussed earlier, FIG. 3 shows a portion of the A
matrix 300 of a HMM with two states per character in the
fixed string, “master of science in computer science”.
Repeated characters in the string do not share the same states.
For example, states 310 and 320, corresponding to the ‘m’ in
“master,” are different from the two states corresponding to
the ‘m’in “computer.” (The portion of the A matrix 300 shown
here does not extend far enough to show the states corre-
sponding to the second ‘m.”) Note that the states do not have
any physical significance, and it is not known whether an
HMM with one state per character, two states per character, or
more states per character, will produce a better HMM. In fact,
embodiments examine HMMs with varying numbers of
states per character to find the HMM with the best perfor-
mance on the training vectors.

Here, states 310 and 320 are states the system might be in
after the first ‘m’ is typed. If the system is in state 310, then
there is a 66% chance that it will advance to state 330 after ‘a’
is typed, and a 34% chance that it will advance to state 340. If
the system is in state 320, there is an 80% chance that it will
advance to state 330 after ‘a’ is typed, and a 20% chance that
it will advance to state 340. Other probabilities in this portion
of the A matrix (350, 360) are uniformly zero, because the
system will never stay in 310 or 320 after ‘a’is typed, nor will
it advance to one of the states in 360, associated with the ‘s’
that will be typed after ‘m’ and ‘a.” The = matrix 370 is
similarly sparse: the system will always start in either state
3100r320, and not in any other state. Inset 380 shows another
view of possible state transitions at times t=1, t=2 and t=3.

The complete A matrix associated with the HMM having
two sub-states per character and 32 characters in the fixed
string is a 64x64 matrix, but all the entries except those in 2x2
sub-matrices just off the diagonal are zero. FIG. 4 represents
this matrix at 410; non-zero elements are shown as black
squares 420. According to an embodiment of the invention,
this large, two-dimensional matrix is restructured as a
smaller, three-dimensional matrix 430, where two dimen-
sions correspond to the two sub-states per character, and the
third dimension corresponds to the series of characters.
Matrix 430 has only 2x2x32=128 entries (most or all of
which are non-zero), while matrix 410 has 64x64=4096
entries, most of which are zero. Operations involving matrix
430 can be performed much more quickly than operations
involving matrix 410. HMMs with larger numbers of sub-
states per character will benefit even more.

The observed symbols in the keystroke dynamics example
are continuous values: the length of time each key is
depressed as the user types the fixed string. Therefore, a
natural representation for the output symbol probability
matrix B is a set of probability distributions initialized from
the mean and standard deviation of the key press durations in
the training samples. Experiments have shown that these
times are normally distributed, so the elements of B can be the
1 and o parameters of a Gaussian probability distribution
function. Given these values for a particular character in the
observation sequence, it is trivial to compute the probability
that a particular key press duration would occur in a test
observation set.

The foregoing informal description of the Hidden Markov
Model parameter matrices is intended to convey the general
idea underlying an embodiment of the invention. Following
are precise mathematical statements of how an embodiment
constructs a HMM. These procedures are applicable when the
state transition matrix, output symbol matrix and initial-state
matrices satisfy the following properties:
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1. States producing an observation symbol at time t do not
produce observation symbols at any other time during an
observation sequence;

2. Only the states producing the first observation symbol in
an observation sequence can have non-zero initial state
probability values; and

3. The probabilities in the state transition matrix for states
producing an observation symbol at time t are non-zero
for transitions to states that produce observation sym-
bols at time t+1, and zero for other states.

Such matrices are found when the system has a well-de-
fined directional progression, although the precise sequence
of sub-states is not predetermined. For example, in the key-
stroke dynamics case, each observation element advances the
system’s state from one of n sub-states corresponding to the
last-typed character, to one of n sub-states corresponding to
the currently-typed character. The system’s state will never
go back, and will never skip ahead to some later state. The
phrase “unidirectional stochastic process” will be used to
denote a system that operates this way. Other systems with
similar properties will be discussed below.

Turning to FIG. 5, a formal mathematical analysis of
operations of an embodiment of the invention is presented.
First, the three-dimensional state transition matrix A is ini-
tialized (510). As explained above, this matrix contains a
selected subset of the full A matrix. The values of the matrix
are set randomly, with the caveat that the aggregate probabil-
ity of advancing from any sub-state to one of the succeeding
sub-states should be 1. The correspondence between values
a,, of A and values a[m][n] of A is given by Equation 1:

1= Eq. 1
Gys = alr + (1 = DN][s + 1N], ®a- D

N is the number of states per observation element, and T is the
number of observation elements in the observation sequence,
r represents a state corresponding to the t* observation ele-
ment and s represents a state corresponding to the (t+1)”
observation element of the observation sequence.

Since the system must start in one of the N states of the first
observation element, only the first N elements of the initial
state probability vector m are non-zero; this vector is initial-
ized accordingly (520) (the values =, . . . @, may be set
randomly, with a sum of 1).

The observation symbol probability matrix B is initialized
(530) with the mean p and standard deviation o of elements of
the training observation vectors.

The initialized HMM is trained on the reference keystroke
patterns (540) using the Baum-Welch form of the EM algo-
rithm, modified to accommodate the three-dimensional state-
transition matrix A as follows:

Modified Forward Procedure

Initialization: o, (#)=m,5,(1,0,) 1 =r=N (Eq. 2)

where r represents a state corresponding to the first obser-
vation element of an observation sequence.

N (Eq. 3)
Induction: a;y(s) = Z (P DT+ 1, 0411)

r=1

l=<r=T-1

where r represents a state corresponding to the t” observa-
tion element and s represents a state corresponding to the
(t+1)” observation element of an observation sequence.
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N (Eq. 4
Termination P(O|A) = Z@T(r) l=r=T-1
=
Modified Backward Procedure
Initialization: P {(s)=1 (Eq. 3)

where s represents a state corresponding to the T obser-
vation element of an observation sequence.

N (Eq. 6)
Inductionr: B,(r) = Z Tprs

s=1

byt +1, 0011)B, 1 (5)

t=T-1,T-2,... ,1

In the expectation step, the y variable is estimated using the
modified forward and backward procedures (y,(j) represents
the probability that the HMM was in state j at time t). In the
maximization step, the model parameters are re-estimated
using modified versions of Rabiner’s formulae:

Modified Rabiner’s Re-Estimation Formulae

(Eq. 7,8)

~ (Okl/l)

1
Z P(O* | 45)

k=1

ST

ZK] Sy
k
£ PO )

(@ (N By + L, 0%, By ()

K

1 _
Z m(ﬁf GIAG)

k=1

Qs =

(Eq. 9, 10)
(5)01

s =

K
2o
k&
DRG]

k=1

K
PR AD G Wy
— k=1
Opg=—"7 "

K
PR
k=1

where:

(i) O is the k™ observation vector of a user,

(ii) K observation vectors are provided by a user in the
enrollment phase,

(iii) subscripts on A refer to the observation vector (k) and
the number of hidden states per observation element (N)
in the model, and

(iv) HMM parameters (A, B, ), forward variable o, back-
ward variable [ and variable y belonging to the model of
the k” observation are super-scripted with k.

As discussed with reference to FIG. 1, these operations are
repeated for several values of N (the number of states per
observation element) and the best HMM examined is selected
as the HMM to identify the user who provided the training

20

25

30

35

40

45

50

55

60

65

8

samples. Once such a model is created, it can be used to
authenticate a candidate user who claims to be the corre-
sponding user.

Other processes similar to keystroke dynamics include
speaker verification and speaker identification. In speaker
verification, if a speaker recites a fixed phrase, then the opti-
mized HMM discussed above may be used with digitized
audio samples of the speaker’s voice. For speaker identifica-
tion, if the speaker recites a fixed phrase, then the optimized
HMM preparation algorithm can be used to prepare HMMs
that can identify the speaker from among a group of enrolled
speakers. Signature verification based on pen location and
pressure features also has appropriate characteristics to per-
mit optimized HMM preparation according to an embodi-
ment of the invention.

On the Complexity of the Modified Hidden Markov Model
Construction

Classifying algorithms on the basis of their complexity
permits significant advances to be distinguished from
approaches that appear different but in fact are merely alter-
nate implementations of the same algorithm. Here, the
asserted complexity of the modified HMM construction
(O(N>T)) will be proven.

In the modified forward procedure, the initialization step is

ay(m=mb(1,0)) 1=r=N Eq. 11

and the induction step is

N Eq. 12

N
i1 () = [Z @ (F)as
r=1

Ds(t+1, 0111) 1

Intheinitialization step of the modified forward procedure,
for each changed value of r (i.e., from 1 to N), there is a
multiplication. Therefore, there are N multiplications in this
step. In the induction step, for each changed value of s (i.e.,
from 1 to N), there are (N+1)(T-1) multiplications. There-
fore, there are N(N+1)(T-1) multiplications in this step.
Similarly, in this step, for each changed value of s, there are
(N-1)(T-1) additions. Therefore, there are N(N-1)(T-1).
Hence, the total number of multiplications and additions in
the modified forward procedure is N+N(N+1)(T-1) and
N(N-1)(T-1), respectively. Therefore, the computational
complexity in the modified forward procedure is O(N°T), as
stated earlier. Analyses of the computational complexity of
the forward procedure using unmodified HMM parameters
may be found in the literature; the complexity is O(N>T?).
Consequently, embodiments of the invention reduce the com-
putational complexity of the forward procedure by T?.

An embodiment of the invention may be a machine-read-
able medium having stored thereon data and instructions
which cause a programmable processor to perform operations
as described above. In other embodiments, the operations
might be performed by specific hardware components that
contain hardwired logic. Those operations might alterna-
tively be performed by any combination of programmed com-
puter components and custom hardware components.

A machine-readable medium may include any mechanism
for storing or transmitting information in a form readable by
a machine (e.g., a computer), including but not limited to
Compact Disc Read-Only Memory (CD-ROM), Read-Only
Memory (ROM), Random Access Memory (RAM), and Eras-
able Programmable Read-Only Memory (EPROM).

As is clear from the above discussion, a method or a
machine readable medium embodying a method may be per-
formed or embodied in any number of devices, including a
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desktop computer, a portable computer, a personal digital
assistant, console device or other handheld processing device
(e.g., a mobile phone) and a keypad access device (e.g., entry
access device). In embodiments describing implementation
with a keypad, a suitable keypad may include, but is not
limited to, a QWERTY keypad, a numerical keypad, a letter
keypad, an alphanumeric keypad, a symbolic keypad, or an
alphanumeric-symbolic keypad having physically depress-
ible keys or touch-screen response.

Some portions of the detailed description above are pre-
sented in terms of algorithms and symbolic representations of
operations on data bits within a computer memory. These
algorithmic descriptions and representations are the means
used by those skilled in the data processing arts to most
effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally, con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers or the like.

It should be born in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “processing,” “computing,” “generating,” “determining,”
“selecting,” “displaying,” “collecting,” “constructing,”
“updating,” “modifying,” “assigning,” “requesting,” “com-
puting,” “performing,” “granting,” “using,” or the like, refer
to the actions and processes of a computer system, or similar
electronic computing device that manipulates and transforms
data represented as physical (electronic) quantities within the
computer system’s registers and memories into other data
similarly represented as physical quantities within the com-
puter system memories, registers or other such information
storage, transmission or display devices.

The present invention also relates to an apparatus for per-
forming the operations herein. This apparatus may be spe-
cially constructed for the required purposes or it may com-
prise a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a computer read-
able storage medium, such as, but not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs and
magnetic-optical disks, read-only memories (ROMs), ran-
dom access memories (RAMs), EPROMs, EEPROMs, mag-
netic or optical cards or any type of media suitable for storing
electronic instructions, each of which may be coupled to a
computer system bus.

The applications of the present invention have been
described largely by reference to specific examples and in
terms of particular allocations of functionality to certain hard-
ware and/or software components. However, those of skill in
the art will recognize that user authentication via Hidden
Markov Model analysis of keystroke dynamics samples can
also be performed by software and hardware that distribute
the functions of embodiments of this invention differently
than herein described. Such variations and implementations
are understood to be captured according to the following
claims.
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We claim:
1. A method comprising:
collecting at a computer keypad, a plurality of first enroll-
ment keystroke vectors from a first enrolling user;

constructing a first Hidden Markov Model (“HMM”)
based on the plurality of first enrollment keystroke vec-
tors;

collecting a second plurality of enrollment keystroke vec-

tors from a second enrolling user;

constructing a second HMM based on the second plurality

of enrollment keystroke vectors;

collecting a claimed identity from an authenticating user;

collecting a test keystroke vector from the authenticating

user;

computing a first probability that the authenticating user is

identical to the enrolling user based on the test keystroke
vector and the HMM;
computing a second probability that the authenticating user
is identical to the second enrolling user based on the test
keystroke vector and the second HMM; and

computing a third probability that the test keystroke vector
was produced by the claimed identity using an HMM
associated with the claimed identity; and performing a
user authentication based on a ratio between the third
probability and a maximum probability of the first and
second probabilities.

2. The method of claim 1 wherein each of the keystroke
vectors comprises a plurality of keystroke event timing ele-
ments.

3. The method of claim 1, further comprising: collecting an
answer to a supplemental authentication question if the prob-
ability is below a predetermined threshold.

4. The method of claim 1, further comprising: granting
restricted access rights if the probability is below a predeter-
mined threshold.

5. The method of claim 1 wherein the plurality of enroll-
ment keystroke vectors and the test keystroke vector are key-
stroke key press duration vectors, and wherein the keypad is
one of a keyboard and a touch-screen.

6. A method comprising:

collecting at a computer keypad, a sequence of observa-

tions of a unidirectional stochastic process;
computing parameters of a first Hidden Markov Model
(“HMM”) based on the sequence of observations
through an algorithm with complexity O(N>T), where N
is a number of sub-states per physical state, and T is a
number of physical states;
computing parameters of a second HMM based on the
sequence of observations through the algorithm with
complexity O(M>T), where M is a number of sub-states
per physical state, T is a number of physical states, and
M is not equal to N; and

using the first HMM to compute a probability that a test
observation sequence would be produced by a system
described by the first HMM, wherein the sequence of
observations of the unidirectional scholastic process are
a plurality of keystroke dynamics key press duration
measurements; and

preparing a consolidated HMM based on the parameters of

the first HMM and the parameters of the second HMM.

7. The method of claim 6 wherein the HMM is a first HMM,
the method further comprising:

computing parameters of a second HMM based on a sec-

ond sequence of observations; and selecting one of the
first HMM or the second HMM as more likely to repre-
sent a system that produced the test observation
sequence.
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8. The method of claim 6 wherein the sequence of obser-
vations comprises a plurality ofkeystroke dynamics measure-
ments.

9. The method of claim 6 wherein the sequence of obser-
vations comprises digitized audio samples of a speaker recit-
ing a predetermined phrase.

10. The method of claim 6 wherein the sequence of obser-
vations comprises features extracted from a signature.

11. The method of claim 6 wherein the keypad is one of a
keyboard and a touch-screen.

12. The method of claim 7 wherein the first HMM repre-
sents a first person, the second HMM represents a second
person, and selecting one of the first HMM or the second
HMM is identifying a user who produced the test observation
sequence.

13. A machine-readable non-transitory medium containing
data and instructions to cause a programmable processor to
perform operations comprising:

collecting enrollment keystroke dynamics timing measure-

ments as a user types a predetermined string;

preparing a Hidden Markov Model (“HMM”) based on the

enrollment keystroke dynamics timing measurements,
wherein preparing the HMM comprises constructing a
three-dimensional state transition matrix, where a first
dimension of the matrix corresponds to a plurality of
sub-states of a first character of the predetermined string,
a second dimension of the matrix corresponds to a sec-
ond character of the predetermined string, and a third
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dimension of the matrix corresponds to a plurality of
characters of the predetermined string;

collecting authentication keystroke dynamics timing mea-

surements as a candidate types a predetermined string;
and using the HMM to estimate a probability that the
candidate is identical to the user, wherein the enrollment
keystroke dynamics timing measurements and the
authentication keystroke dynamics timing measure-
ments comprise key press duration for each character of
the predetermined string.

14. The machine-readable non-transitory medium of claim
13 wherein the HMM has a plurality of sub-states corre-
sponding to each character of the predetermined string.

15. The machine-readable non-transitory medium of claim
13, containing additional data and instructions to cause the
programmable processor to perform operations comprising:
granting access to the candidate if the probability exceeds a
predetermined threshold.

16. The machine-readable non-transitory medium of claim
13, containing additional data and instructions to cause the
programmable processor to perform operations comprising:
performing a supplemental authentication process if the prob-
ability is below a predetermined threshold.

17. The machine-readable non-transitory medium of claim
13, wherein the keypad is one of a keyboard and a touch-
screen.



