

Zhang, Junling; Chen, Jiangang; Li, Yongweng; Sun, Yunhan; Recent Technological Developments in Cobalt Catalysts for Fischer-Tropsch Synthesis; Journal of Natural Gas Chemistry, vol. 11 No. 3-4 2002; pp. 99-108.

* cited by examiner

Primary Examiner — Jafar Parsa
(74) Attorney, Agent, or Firm — Jones Walker LLP

ABSTRACT

A Fischer-Tropsch process including the steps of providing a reactor having a substrate element with a surface and a plurality of elongated micro-structures of catalyst material attached to the substrate surface. The catalyst material includes at least one of cobalt, iron, or ruthenium and the micro-structures have a width of less than about 1 μm and a length at least five times the width. A carbon compound and hydrogen are injected into the reactor such that at least a portion of the carbon compound and hydrogen contact the catalyst material. The carbon compound and hydrogen are reacted with the catalyst at a temperature between about 80°F and about 200°F.

14 Claims, 12 Drawing Sheets
Flow controller is set to 300 SCCM

CO Supply
P = 450 PSIG

H₂ Supply
P = 475 PSIG

Flow controller is set to 150 SCCM

43 Reactor Preheater

46 Reactor

45 Heat Tracing

46 Cascade Temperature Control
SVP = 400°F

to Separator

48 Reactor Pressure
Regulator SVP = 400 PSIG

FIGURE 7
74 Heavy Fractions

75 Higher Value Products

FIGURE 10A

73

74 Naphthas

75 Reformates

72

FIGURE 10B
Fig. 11
2Li + O₂ ⇌ Li₂ + O₂

FIGURE 14
Fig. 15
BOUND COBALT NANOWIRES FOR FISCHER-TROPSCH SYNTHESIS

This application claims the benefit under 35 USC §119(e) of U.S. provisional application Ser. No. 61/160,949 filed Mar. 17, 2009, which is incorporated by reference herein in its entirety.

1. FIELD AND BACKGROUND OF INVENTION

The present invention generally relates to catalytic processes and in particular embodiments, catalyst shapes and structures to enhance catalytic activity.

Catalytic processes are used in numerous chemical processes where some estimates suggest that 90% of all commercially produced chemical products involve catalysts at some stage of their manufacture. Examples include catalytic cracking in the petroleum refining industry, catalytic oxidation in many large-scale chemical production methods, highly specialized catalytic reactions in fine chemical production, catalytic hydrogenation in the food processing industry, and reduction of pollutants in transportation and industrial emissions.

Several factors affect the efficiency of catalytic processes, including optimizing reactant exposure to the catalyst, minimizing the catalyst's degradation, and improving the regeneration of catalyst when required. Improvements in one or more of these factors would be beneficial across a broad spectrum of catalytic processes.

II. BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically illustrates a very basic reactor system.

FIG. 2 schematically illustrates a slightly more complex reactor system.

FIGS. 3A to 3D illustrate different substrates with catalyst formed thereon.

FIGS. 4A to 4D illustrate a series of steps used in one method of forming catalyst on a substrate.

FIGS. 5A and 5B schematically illustrate the orientation of catalyst substrate elements in two different reactor arrangements.

FIG. 6 schematically illustrates the reactor system of utilized in one experimental example.

FIG. 7 schematically illustrates the reactor system utilized in another experimental example.

FIG. 8 illustrates the hydrocarbon distribution from an experimental example.

FIGS. 10A and 10B schematically illustrate petroleum cracking and reforming processes.

FIG. 11 schematically illustrates a dry reforming process.

FIG. 12 schematically illustrates a catalytic converter system.

FIG. 13 schematically illustrates a lithium-ion cathode embodiment.

FIG. 14 schematically illustrates a lithium-air cathode embodiment.

FIG. 15 schematically illustrates a Haber-Bosch process embodiment.

FIG. 16 schematically illustrates a fuel cell embodiment.

III. DETAILED DESCRIPTION OF SELECTED EMBODIMENTS

One embodiment of the invention is a Fischer-Tropsch process (FTP) wherein a gaseous carbon compound and hydrogen are injected into a reactor such that at least a portion of the carbon compound and hydrogen contact a catalyst material and are reacted with the catalyst (often at above ambient pressure and temperature) in order to form hydrocarbon chains. As suggested in FIG. 1, such a process would include a reactor 2 which is fed from a carbon compound source 3 and a hydrogen source 4. Catalyst substrate elements 5 would be positioned in reactor 2 and have the catalyst formed thereon. The carbon compound and hydrogen will pass through the reactor 2 and react with the catalyst to produce a hydrocarbon output product 6. Many variations of this basic process are possible. For example, FIG. 2 illustrates a preheater 10 positioned before reactor 2 and a condenser 12 positioned thereafter. The preheater 10 would raise the temperature of the carbon compound and hydrogen from their initial temperatures to a temperature closer to that desired at the reactor input. Condenser 12 would operate to condense gaseous hydrocarbons, remove water 7 from the output product 6, and to provide a final de-watered liquid hydrocarbon product 8.

The carbon compound may take many different forms depending on the type of catalyst employed, the end product desired, and the particular process parameters. In many FTP systems, the carbon compound will typically be CO, but could be other carbon compounds. The hydrogen is typically in the form of molecular hydrogen (H2), but could be other hydrogen containing compounds. The catalyst substrate elements 5 may take enumerable shapes or forms. FIG. 3A illustrates a flat plate structure 15 while FIG. 3B illustrates a rod structure 16 acting as a substrate. Other non-limiting examples of substrate shapes/structures include tubular substrates, either straight or curved (e.g., spiraled), and washer-shaped substrates. Typically, the substrates will be formed of metal or have a metal coating applied to the surface of the substrate onto which the catalyst is formed. Certain embodiments may include conductive metals such as aluminum, cobalt, iron, copper, platinum, palladium, rhodium, ruthenium, chromium, nickel, other noble metals, other transition metals, other conductive metals/alloys. Substrates may take irregular forms such as a comparatively planar surface which has a large number of micro-structures formed thereon. In one example, the micro-structures are a field of micro-needles (defined below) which then have a catalyst material sputtered on as a thin film. In certain embodiments, nominal dimensions for such substrate micro-structures may range from about 5 nanometers to about 1 micron.

In one embodiment, the substrate is an aluminum foil type material 18 which is rolled to provide concentric layers of substrate material (see FIG. 3C) having catalyst micro-structures 17 formed thereon. In another embodiment (FIG. 3D), the substrate will be non-uniform with bearing surfaces 36 and protected recessed surfaces 37. The catalyst micro-structures 17 could be formed on the recessed surfaces 37 in a location protected from mechanical engagement with other surfaces while bearing surfaces 36 would contact the walls of the reactor or other catalyst substrate elements. In many embodiments, the substrate element is substantially nonporous, meaning that the substrate is sufficiently nonporous that under given reaction pressures and flow rates, the reactants will flow around and past the substrates (thus contacting microstructures on the substrate surface) rather than through the substrate material.

In certain embodiments, catalyst will be formed on the substrate as elongated micro-structures. One version of these micro-structures have a width of less than about 1 um and include a crystal structure having substantially no grain boundaries. In other versions, the micro-structures may also
contain grain boundaries, either engineered and controlled for specific effects or simply allowed as inherent part of a particular manufacturing process. Although the size is greatly exaggerated, FIGS. 3A and 3B suggest how these elongated micro-structures 17 (or "micro-needles" 17) may be formed on a substrate. Although the width or diameter of micro-
needles 17 in many embodiments will range anywhere from a few nanometers to about 1 um (or any sub-range therebe-
tween), certain width ranges for micro-needles 17 include between about 10 nm and about 500 nm or between about 20 nm and about 100 nm. Micro-needles 17 are elongated in the sense that they will have a length at least five times their diameter, and more commonly a length at least 5 times to about 10,000 times their diameter (or any sub-range there between) or alternatively, about 10 um to about 5 milimeters in length (or any sub-range there between).

As used herein, a crystal structure having no grain bound-
aries means all crystals in the structure have a substantially uniform orientation in a single crystalline plane. One example of how the orientation of the crystalline plane may be defined is the Miller Index. Thus, the crystalline plane may be defined as [100], [111], etc. Such a crystal structure has substantially no grain boundaries when the mis-orientation between grains is at a relatively low angle, for example less than approximately 10 to 15 degrees. In certain embodiments, the min-
imization of grain boundaries is accomplished by limiting the micro-needle diameter to about 100 nm or less.

In many embodiments, the micro-needles will be formed on the substrate or a relevant portion of the substrate (i.e., not necessarily the entire substrate surface) at a given packing density. Packing density is defined as the total area of micro-
needles (i.e., the sum of cross-sectional area of the needles) attached to the substrate divided by the substrate surface area over which needles are distributed. In one embodiments, the packing density is approximately 50%, but in other embodi-
ments the packing density could range from about 10% to about 90% (or any sub-range there between). Likewise, less common embodiments could exist with packing densities around the 1% to 5% range or the 90% to 100% range.

The catalyst materials employed will often depend on the type of FFP being utilized. In certain embodiments, the cata-
yst material will be at least one of cobalt, iron, nickel, or ruthenium. The micro-needles will often be formed compo-
ently of one element. Alternatively, the micro-needles could be a non-catalyst material coated with a catalyst layer. Other embodiments could include micro-needles formed from a first catalyst material (e.g., cobalt) and capped with a section of a second catalyst material (e.g., ruthenium). The catalyst materials could also be alloys whose compositions include cobalt, iron, or ruthenium together with another elements or compounds. Four particular embodiments for constructing catalyst structure could include: 1) simple electroplating of one metal as one crystal; 2) one metal in one more crystal planes for a desired effect; 3) two or more metals all electro-
plated in successive layers with each successive layer essen-
tially “capping” the previous layer and leaving all previous material exposed; and 4) deposition of another material on top of existing needles (or other structures) with the intention of completely covering the needle/structure. The deposition technique described in (4) could be by evaporation (thermal or electron beam), sputtering, reactive sputtering, self-
assembled monolayers, or multiple layers from a polyelectrolyte multi-layer technique.

Numerous processes may be used to form the micro-
needles described above onto a substrate. In one embodiment suggested in FIGS. 4A to 4D, the substrate 20 (e.g., a plate seen from the side) may be a conductive material such as aluminum, copper, titanium, nickel, iron, chromium, tung-
sten or an alloy of these materials. A non-conductive layer 21 is formed or is allowed to form on the surface of the substrate 20 (FIG. 4B). For example, where the substrate 20 is alumi-
nium, an aluminum oxide coating may be formed on substrate 20. In one embodiment, the aluminum oxide coating is formed through an anodization process. Prior to anodization, the substrate is typically cleaned in either a hot soak cleaner or in a solvent bath and may be etched in sodium or similar compounds. The anodized aluminum layer is grown by pass-
ing a direct current through an electrolytic solution (e.g., sulfuric acid), with the aluminum object serving as the anode. Example voltages may range from 1 to 300 V DC, although more typically fall in the range of 15 to 21 V. Example anodizing currents vary with the area of aluminum being anodized, but typically may range from 0.3 to 3 amperes of current per square decimeter (20 to 200 m/An2). Anodizing may be performed in an acid solution which slowly dissolves the aluminum oxide. The acid action is balanced with the oxidation rate to form a coating with micro-
scopic pores 22 suggested in FIG. 4C. Conditions such as electrolyte concentration, acidity, solution temperature, and current are controlled to allow the formation of a consistent oxide layer and may be used to control the size of the pores. Anodizing at lower temperatures tends to decrease the density of the pores; the pore and ultimately needle/micro-structure nominal diameter is decreased and the aluminum oxide mass is increased. Increased current tends to increase the diameter of the pores in the aluminum oxide and the resulting needle/structure density. As explained in more detail below, the pore size is configured to obtain the desired diameter of the micro-
needles. The thickness of the anodized layer 21 may vary with one example being almost 50 um thick aluminum oxide coating.

As suggested in FIG. 4D, one embodiment involves plac-
ing the substrate 20 having anodized layer 21 and micro-pores 22 in a solution containing catalyst ions. In the example of FIG. 4D, the catalyst ions are cobalt ions formed by dissolving Co(NO3)2 in an aqueous solution in a (molar) concentration range of about 0.05 to about 2.0. FIG. 4D illustrates the cathode of DC voltage source 27 being connected to substrate 20 and the anode 29 being positioned in the catalyst containing solution. As a voltage is applied between substrate 20 and anode 29, elongated cobalt structures (micro-needles 28) will grow in the pores 22. It will be understood that the size of the pores 22 will govern the diameter of the micro-needles 28. Factors affecting growth of the catalyst needles include temper-
ture of the solution, strength of the electric field, solution chemistry, and spatial orientation of the electrodes (e.g., di-
tance apart). Typically, the further the anode is from the substrate, the greater the tendency for the micro-needles to form in an elongated manner. In the embodiment of FIG. 4D, the electrolyte temperature may range between about 10° C. and about 50° C.; the current density may range between about 0.01 and about 0.5 A/in2; and the anode 29 is positioned at least about 2 cm to about 30 cm from the surface of the substrate 20. Of course, these are merely example parameters and those skilled in the art will recognize enumerable alternative parameters and techniques.

In other embodiments, sources of the Co or Fe ions might be Co(NO3)2, CoSO4, and FeCl3. In certain embodiments, the electric current may alternate or be pulsed. In an alternate embodiment, the micro-needles will be formed in the presence of a magnetic field in order to aid in the uniform orien-
tation of the crystal lattice as the micro-needles are grown. As one example, a magnet 26 may be positioned below substrate 20 in order to create a magnetic field having an orientation
suggested by magnetic flux lines. As an alternative to applying the magnetic field during micro-needle growth, the fully formed micro-needles could be subject to a magnetic field and heat treatment process to effect a desired dipole alignment. Nevertheless, it should be clear that the invention also includes micro-needles grown in the absence of any applied magnetic field.

While the above examples form the micro-structures through a electroplating technique, numerous other processes could be used to form the micro-structures, non-limiting examples of which include low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), or sputtering.

Once the catalyst micro-needles are formed on a substrate, one or more substrate elements having the micro-needles may be positioned within a reactor. While certain orientations of the substrate elements in the reactor may produce a more efficient reaction, the exact orientation of the substrate elements may vary significantly from embodiment to embodiment. As suggested by Fig. 5A, a plate substrate 15 could be oriented such that it faces (i.e., the surfaces with micro-needles 17) perpendicular to the overall flow direction of the reactants. While hidden from view, these plate substrates 15 would have micro-needles formed on the front (shown in Fig. 5A) and back (view hidden in Fig. 5A) sides. Although spacing of plate substrates 15 is greatly exaggerated, Fig. 5A suggests how the plates could be positioned to direct flow around the plates to maximize contact with the catalyst micro-needles. Regardless of substrate angulations, these could be positioned with their long axis parallel to the overall flow direction of reactants as suggested by Fig. 5B. Likewise, the substrates seen in Figs. 3C and 3D would be positioned with their long axes parallel to the overall direction of reactant flow.

The reactor parameters may differ considerably depending on variables such as the type of catalyst employed, the input reactants and the final product sought. As one non-limiting example, where H₂ and CO are the reactants, cobalt micro-needles are positioned on rod substrates in the reactor, and the intended product is diesel type hydrocarbons (i.e., ranging from approximately C₁₀H₂₀ to C₇H₁₄), then the reactor may operate in temperature ranges of approximately 300°C to 500°C and preferably about 400°C, while the pressure in the reactor is maintained in a range of about 100 psi to 500 psi and preferably about 400 psi. Example reactant flow rates would include about 75 to about 1000 standard cubic centimeters per minute (SCCM) for CO and about 150 to about 2000 SCCM for H₂. The ratios ranged from 1.0 to 2.0 H₂/CO.

In an alternate Fischer-Tropsch process embodiment, the reactor comprises substrate elements having elongated micro-structures of at least one of cobalt, iron, or ruthenium. The carbon compound and hydrogen are fed into the reactor and reacted with the catalyst at a temperature (i.e., the average internal temperature of the reactor) between about 80°C and about 200°C (or any sub-range therebetween). In another variation of this embodiment, the carbon compound and hydrogen are reacted with the catalyst at a temperature between about 90°C and about 150°C. In any of the FTP embodiments described herein, the carbon compound (e.g., carbon monoxide) and hydrogen may be supplied at a mass ratio ranging from about 1:1 to about 1:3 and preferably about 1:1 to about 1:2. Generally the reactor temperature will vary with pressure. At lower temperatures, the reactor pressure may be between about 0 and 5 psig. More commonly the reactor pressure may be between about 5 and 50 psig (or any sub-range therebetween). However, other embodiments may run at a reactor pressure of between about 0 and 400 psig (or any sub-range therebetween).

In another alternate embodiment, the reactor may be a conventional plate frame heat exchanger. In this type of heat exchanger, there are typically two alternating chambers or pathways, usually thin in depth, separated at their largest surface by a corrugated metal plate. The plates may be spaced by rubber sealing gaskets which are cemented into a section around the edge of the plates. The plates are often pressed to form troughs at right angles to the direction of flow of the liquid which runs through the channels in the heat exchanger. These troughs are arranged so that they interlink with the other plates which forms the channel with narrow gaps on the order of millimeters (e.g., 1.3-1.5 mm) between the plates.

The catalyst micro-needles will be formed on the plate surfaces of the pathway which is exposed to the reactants. A temperature control (typically cooling, but also heating in other embodiments) fluid circulates through the other pathway. In a modification of this embodiment, the reactants may be mixed in a diluent. For example, where CO and H₂ are the reactants, these reactants could be mixed decane or hexane as diluents prior to entering the reactor.

A further embodiment shown in FIG. 10A is a reactor column 70 which generally comprises a riser tube 71 with a temperature control coils 72 contacting the outside of riser tube 71 and micro-structures 73 formed either directly on the inside surface of riser tube 71 or on separate substrate elements positioned in the riser tube 71. Reactants will enter via input path 74, contact the catalyst structures 73 and product(s) exit via exit path 75. In one example, reactor column 70 may be used in a fluid catalytic cracking process, where preheated high-boiling petroleum feedstock (at about 315 to 430°C) consisting of long-chain hydrocarbon molecules is injected into the catalyst riser where it is vaporized and cracked into smaller molecules of vapor by contact with the catalyst micro-structures. In such embodiments, the catalyst may be platinum or iron coated with platinum.

Alternatively, the reactor column 77 in FIG. 10B could be employed in petroleum reforming process which converts petroleum refinery naphtha, typically having low octane ratings, into high-octane liquid products which are components of high-octane gasoline. The liquid feed is joined by a stream of hydrogen-rich gas and the resulting liquid-gas mixture is preheated by flowing through a heat exchanger. The preheated feed mixture is then totally vaporized and heated to the reaction temperature (405 to 520°C) before the vaporized reactants enter the reactor. Although FIGS. 10A and 10B schematically illustrate catalyst micro-structures 73 on the sides of the reactor columns, it will be understood that the catalyst could be positioned in any substrate structure located anywhere in the column.
FIG. 12 illustrates a reactor type which could serve as a catalytic converter in an automobile exhaust system. Catalytic converter 85 may generally comprise a reactor body containing a catalyst substrate and catalyst microneedles formed on the substrate. In one embodiment, the substrate elements comprise a plurality of rods positioned parallel to the flow path of the reactor body. Typically, the input reactants will be automotive exhaust gases such as CO, CO₂, NO, and NO₂. Certain embodiments may contain only one catalyst type in the reactor. In other embodiments, the reactor may have a first set of substrate elements 85 with microneedles formed of a reduction catalyst and a second set of substrate elements 89 with micro-needles formed of an oxidation catalyst. Non-limiting examples of reduction catalyst include platinum and/or rhodium and oxidation catalyst include platinum and/or palladium.

FIG. 13 illustrates an embodiment where in the microneedles form part of an lithium-ion anode. The lithium-ion battery 90 includes battery body 91 having an anode 92, a cathode 93, and electrolyte 94. The cathode is generally one of three metal oxide materials: a layered oxide (such as lithium cobalt oxide), one based on a polyanion (such as lithium iron phosphate), or a spina (such as lithium manganese oxide). The electrolyte is normally a lithium salt in an organic solvent. One typical example is a mixture of organic carbonates such as ethylene carbonate or diethyl carbonate containing complexes of lithium ions. These non-aqueous electrolytes generally use non-coordinating anion salts such as LiPF₆, LiAsF₆, LiClO₄, LiBF₄ and lithium triflate. One embodiment of the anode 92 is conductive metal having micro-needles 95 formed thereon with a carbon layer 96 subsequently formed on the micro-needles 95. In one preferred embodiment micro-needles 96 are copper. One example method of applying a carbon layer to the micro-needles is using a plasma enhanced chemical vapor deposition technique to produce a harder, more diamond-like carbon layer. Another example uses a low pressure chemical vapor deposition technique to produce a less hard graphite-like carbon layer.

FIG. 14 illustrates an embodiment wherein battery 100 comprises Li metal anode 101 in LiPF₆ electrolyte 102. The cathode is formed of a perforated metallic membrane 103 with a PTFE membrane 105 which allows O₂ to escape the battery but prevents the migration of moisture (H₂O) from contacting the battery electrolyte. In preferred embodiments, perforated metallic membrane 103 is a thin plate of either Co, Au, or Ni with 10 um to 1 mm pores formed thereon. In these embodiments, Co is one possible catalyst for micro-needles 104. During discharge, lithium cations flow from anode 101 through an electrolyte 102 and combine with oxygen at the cathode to form lithium oxide Li₂O or lithium peroxide Li₂O₂ thereby inducing the flow of electrons from the battery’s anode to the cathode through a load circuit. The micro-needles catalyze the combining of Li₂O and O₂ during discharge and catalyze the dissociation of these molecules during charging.

FIG. 15 illustrates a reactor 111 that could be employed in a Haber-Bosch process 110. Reactants N₂ and H₂ are fed into high pressure reactor body 111 where the reactants contact micro-structure catalyst formed on substrate elements 112. In one embodiment, the N₂ source is simply the surrounding atmosphere. The output containing ammonia and unreacted N₂ and H₂ are fed to cooler/condenser 113 which allows removal of ammonia and return of unreacted gases back the input of reactor body 111. In this example of the Haber-Bosch process, the catalyst micro-structures are formed of iron or alternatively iron with osmium tips or layers. Example pressure ranges within reactor 111 may be about 0 psig to about 1000 psig (or any sub-range therebetween).

A still further embodiment in FIG. 16 schematically represents fuel cell 115. Fuel cell 115 generally comprises hydrogen diffusion plate 116 and oxidant diffusion plate 117 with proton exchange membrane 119 positioned in between. Both diffusion plates 116 and 117 will have micro-needle catalyst structures 118 positioned therein. In FIG. 16, the catalyst metal from which the micro-needles are formed is platinum. Within hydrogen diffusion plate 116 the catalyst micro-needles catalyze the dissociation of protons from the hydrogen and in oxidant diffusion plate 117 the combination of O₂ with hydrogen to form water.

One alternative embodiment is a Fisher-Tropsch process reactor surface comprising (a) a substrate element having a surface; and (b) a plurality of elongated micro-structures of catalyst material attached to the substrate surface, the micro-structures comprising a width of less than about 1 μm.

Another embodiment is a Fisher-Tropsch process reactor surface comprising (a) a substrate element having a surface; and (b) a plurality of elongated micro-structures of catalyst material attached to the substrate surface, the micro-structures comprising a crystal structure having substantially no grain boundaries.

A still further embodiment (Embodiment A), is a catalytic reactor comprising (a) an enclosed reactor body including at least one reactor entrance port and at least product exit port; (b) at least one substrate element including a surface and being positioned within the reactor body; and (c) a plurality of elongated micro-structures of catalyst material attached to the substrate surface, the micro-structures comprising a width of less than about 1 μm and a length at least five times the width.

Alternatives to Embodiment A could include (in the alternative): (i) a temperature control mechanism regulating process temperatures of the reactor; (ii) a pressure control mechanism regulating process pressures of the reactor; (iii) the catalyst being at least one of cobalt, iron, ruthenium, nickel, platinum, palladium, rhodium, or copper; (iv) the micro-structures comprising a crystal structure having substantially no grain boundaries; (v) the micro-structures having a width of less than about 500 nm and a length at least ten times the width; (vi) the temperature control mechanism comprising a cooling conduit which forms part of the substrate or upon which the substrate is positioned: (vii) the substrate element consisting substantially of a metal or a metal coated material; (viii) the substrate element being a plate member or a tubular member; (ix) the substrate element comprising a plurality of plates positioned in series in a flow path of the reactor body; (x) a first plurality of micro-structures comprising a reduction catalyst and a second plurality of micro-structures comprising an oxidation catalyst; (xi) the reduction catalyst comprising platinum and/or rhodium and the oxidation catalyst comprising platinum and/or palladium; (xii) the substrate element being substantially nonporous; (xiii) temperature control elements being in contact with the reactor body; (xiv) the reactor body forming a catalyst riser in a fluid catalytic cracking process; (xv) the micro-structures of catalyst material comprising iron coated with platinum; (xvi) naphtha being the reactant inputs; (xvii) the catalyst material comprising at least one of nickel, platinum, cobalt, or iron.

Another embodiment is a catalyst reaction process comprising the steps of: (a) providing a reactor comprising a substrate element having a surface and a plurality of elongated micro-structures of catalyst material attached to the substrate surface, the micro-structures comprising: (i) a width of less than about 1 μm; and (ii) a length at least five times the
width; (b) injecting at least two reactants into the reactor such that at least a portion of the reactants contact the catalyst material; and (c) reacting the reactants with the catalyst at above ambient pressure. This embodiment could also include the alternative wherein the reactants are reacted with the catalyst at a temperature of less than about 200°F and a pressure of less than about 50 psig.

IV. EXPERIMENTAL EXAMPLES

Example I

A reactor (shown schematically in FIG. 6) was fabricated from one inch OD autoclave tubing and was six inches in length. The catalyst substrates were three ½ inch diameter aluminum rods approximately two inches in length. The rods were allowed to rest on one another with no specific structure spacing the rods apart. The reactor was sealed on each end with standard “Swagelok®” compression fittings.

Micro-catalyst needles were formed on the substrate rods with the following process: First, the substrates were mechanically cleaned. Using household cleaners (e.g., Lysol or Formula 409), the substrates were presoaked in the cleaner for approximately 20 minutes. Using a wire brush or other abrasive cleaners, the substrates were scrubbed to remove any mill scale or dirt. The substrates were then returned to the cleaning bath for 20 minutes. Second, a commercially available alkaline cleaner was heated to 140°F and the substrates immersed in the solution for 20-30 minutes. Third, the aluminum substrates were chemically etched using a weak solution of sodium hydroxide. This solution was maintained at approximately 110°F. The substrates were submerged in the solution for twenty seconds to one minute. If the substrates foam excessively, they were removed from the solution. Fourth, the substrates were deoxidized. Surface etching typically leaves behind some oxidized material or smut. This material should be removed before anodizing. Commercial aluminum desmutting solutions are recommended to accomplish this task. This example process used a commercial “Desmut Al-1” at a concentration of 9 ounces per gallon of solution. Immersion times vary due to the degree of oxidation, but generally were in the range of one to three minutes. Fifth, substrate anodization was conducted in a sulfuric acid solution at a concentration of 8 ounces per gallon of solution. The solution was not heated, but was agitated. The substrates to be micro-templated were connected to the anode terminal of a DC power supply and immersed in the acid solution. A cathode from the power supply was also immersed in the solution. Substrates were anodized with a current density of about 0.1 A/in². DC potential typically ranged from ten to twelve volts. Typically, a twenty minute anodizing process was used to produce the nano-structured template having micropores on the order of 10 nm.

Lastly, the catalyst micro-noodles were formed on the substrate. For purposes of this example, cobalt was selected as the catalyst material to be plated. The source of cobalt used was cobalt nitrate and a solution of two ounces Co(NO₃)₂ per gallon of solution was prepared. The substrates to be plated were immersed in the solution and connected to a cathode of a DC power supply. The anode for the power supply was connected to another electrode and also immersed in the Co(NO₃)₂. A current density of 0.050 A/in² with a DC potential of two to three volts. This process was continued for 2 to 8 hours to produce micro-noodles about 10 nm in diameter and 5 um in length with a packing density of about 30%.

The reactor tube (with substrate rods inserted) was placed on a hot plate and connected to a source of reactant gases at one end of the tube and the opposite end of the tube was connected to a flask and products were collected at atmospheric temperature. Reaction gases were obtained from cylinders provided by Nexcelor® Gases and were regulated to approximately 450PSIG and gas flow was controlled with “Aalborg” mass flow controllers. The reactor pressure was maintained by a back pressure regulating valve obtained from “Swagelok®”. The hot plate was kept at about 400°F. After the catalyst was loaded, the reactor was purged to remove contaminants and then pressurized to 400 psig. A flow of hydrogen was established and the temperature was increased to approximately 400°F. Carbon monoxide and hydrogen were introduced into the reactor at stoichiometric ratios and a reactor space velocity of 0.14 min⁻¹ was achieved. Reaction gases flowed into the reactor reacted on the surface of the catalyst and the products exited the reactor space at high temperature (~400°F) and high pressure (~400PSIG) in one phase. The reactor was continuously operated in the above described regime for 13 days. There was cooling of the product when it exited the reactor through the back pressure regulator and product collection was at atmospheric temperature. After the pressure was reduced in the backpressure regulator, the reaction products were cooled and the liquid/solid phases produced were collected. The denser phases were separated from the gasses in a single stage as the reaction products were collected. No evidence of charring or coking of the catalyst micro-noodles was seen. Analysis showed the CO conversion was approximately 0.045 mol CO/mol Co-min. FIG. 8 shows the hydrocarbons produced and their percentage distribution.

Example II

Another reactor was fabricated from one-half inch autoclave stainless steel tubing and was about eighteen inches long as suggested in FIG. 7. CO and H₂ reactants were supplied from cylinders and controlled at 450 PSIG. Reactant flowrates were controlled by Aalborg mass flow controllers. The reactants first passed through a preheater constructed of ¼ inch stainless steel tubing about 18 inches in length with heating trace 45 wrapped around the tubing. The reactor tube likewise was wrapped with heating trace 45. The reactor system also included a cascade temperature controller 46 and a Swagelok back-pressure regulator 48. Although not shown in FIG. 7, the reactor system included a separator which received the reacted product and removed water from the hydrocarbons. A simple separator was formed with a five gallon glass carboy that separated the liquid products from the vapor products. The catalyst substrates were ¼ inch aluminum 6061-T6 all thread rods with cobalt micro-noodles formed as described in Example 1.

After four rods were inserted into the reactor and supported in the vertical position by the rod threads engaging compression fittings at the reactor exit end, the other reactor end was sealed using “Swagelok” compression fittings. The flow controllers were set at 300 SCCM for CO and 150 SCCM for H₂. The reactor temperature was controlled at 400°F with the heating traces 45 and the pressure was regulated at 400PSIG using the back-pressure regulator 48. The temperature of the exiting fluid was measured using a thermowell and a “J” type thermocouple. This temperature was controlled by manipulating the reactor wall temperature (by cycling the heat tracing on/off) which was measured by a surface thermocouple in a cascade mode. The product produced was a hydrocarbon mixture which consisted substantially of C—numbers that are normally considered in the diesel range.

Example III

As suggested by FIG. 9, a multi-channel borosilicate microreactor 50 was fabricated in order to conduct simulta-
neous testing of various forms of cobalt catalysts. The top piece of the microrreactor had channels 52 etched via a poly-5
erm mask and sandblasting. The bottom piece of the micror-10
reactor had a resistive heater 53. See Brown, et al., Micro-15
reactors for Synthetic Diesel Production to Optimize Nanostructured Cobalt Catalyst. Institute for Micromanufacturing, LA Tech University, 2009, which is incorporated by reference herein in its entirety.

Fabrication of the metal (e.g., Al) strips was performed by15
deposition, photolithography, and etching steps. Photore sist20
S1813 was used for the photolithography portion of the fab rica tion. Process steps included a 3000 rpm, 1 min photore sist spin, 115° C, 2 min anneal, and 90 sec of UV exposure. The exposed Al from this process was etched with a solution of 1 vol% HNO₃, (Sigma Aldrich, 70%, A.C.S. reagent), 10 vol%25
H₃PO₄ (Alfa Aesar, 85%,aq. soln.) with the remainder water and heated to 50° C. The undeveloped photosist was removed with acetone.

A reference catalyst of cobalt was electroplated on one of the aluminum strips. The plating solution consisted of a 100 g/L aqueous solution of CoCl₂·6H₂O and was plated at a current density of 30 mA/cm² at room temperature for 2 min using a cobalt counter-electrode.

A second test catalyst of cobalt was impregnated into the pores of Al₂O₃ (alumina). The alumina was fabricated via anodization in oxalic acid followed by chromic acid etching. The anodization process typically produces small pores with increasing diameter as the alumina increases in thickness due to a steady drop of current density with constant voltage. Therefore the process was modified by maintaining a constant current density with a steadily increasing voltage yielding a cylindrical shape rather than a conical shape. A high current density was used to increase the interpor spacing followed by etching in chromic acid to increase pore diameter to approximately 100 nm. Co(NO₃)₂ was used as the aqueous cobalt source because of its high solubility of 134 g/100 mL. The solution was deposited onto the porous aluminum oxide structure and allowed to dry, thus allowing the metallic cobalt precipitate to stick to the inside of the pores.

A third catalyst was a cobalt nanowire catalyst. The same anodization as performed in the second catalyst was performed to obtain the porous aluminum oxide layer. Cobalt nitrate was used as the aqueous solution as well. The solution consisted of 7.6 wt% cobalt nitrate at room temperature with a potential of 2 V. The cobalt was deposited under a high magnetic field produced by a neodymium-iron-boron (NiB) magnet with a BiMax of 50 MG@e. Once the cobalt nanowires extended beyond the aluminum oxide substrate the intrinsic magnetic field of the wires and the NiB magnet continue to keep the nanowires growing along the same crystal crystalline planes.

The resulting nanowires had a diameter similar to the pore size and tapering to a point at their maximum height on the order of 10 µm obtained high-aspect ratio nanostuctures determined by a Hitachi S4800 scanning electron microscope (SEM) with an Edax Genesis energy dispersive spectroscopy. Hydrogen and carbon monoxide were flowed into the reactor at variable stoichiometric ratios and heated to a variety of operation conditions ranging from 150° C and 300° C and 300 psi to 450 psi. The cobalt catalysts tested were in fixed bed reactor configuration. The liquid product formed in the channel with the magnetically formed nanowires at 280° C and 410 psi produced a liquid phase composed of 94% diesel. The catalyst formed of nanowires ran for more than 300 hrs without showing major signs of wear which is much higher than typical cobalt catalysts that generally have a lifetime of no more than one hour. Oxidation is the primary reason cobalt catalysts deactivate and coking is secondary. Coking is when multiple carbon atoms come together to form graphite. The

significantly longer run time is probably due to a high crystallinity of the nanowires so oxygen in the reactant stream cannot permeate into the cobalt structure via grain boundaries. The long run time is also evidence that the open structure of the cobalt nanowires does not allow for hydrocarbon accumulation as happens in a porous cobalt catalyst.

The invention claimed is:

1. A Fischer-Tropsch process comprising the steps of:
a. providing a reactor comprising a substrate element having a surface and a plurality of elongated micro-structures of catalyst material attached to the substrate surface, the catalyst material including at least one of cobalt, iron, or ruthenium and the micro-structures comprising:
 i. a width of less than about 1 um;
 ii. a length at least five times the width
b. injecting a carbon compound and hydrogen into the reactor such that at least a portion of the carbon compound and hydrogen contact the catalyst material;
c. reacting the carbon compound and hydrogen with the catalyst at a temperature between about 80° F. and about 200° F.

2. The process according to claim 1, wherein the carbon compound is carbon monoxide.

3. The process according to claim 1, wherein carbon compound and hydrogen are reacted with the catalyst at a temperature between about 90° F. and about 150° F.

4. The process according to claim 1, wherein the reactor operates at a pressure of less than about 50 psig.

5. The process according to claim 1, wherein the substrate element is substantially nonporous.

6. The process according to claim 1, wherein the carbon monoxide and hydrogen are supplied at a mass ratio ranging from about 1:2 to about 1:1.

7. The process according to claim 1, wherein said reactor includes a fluid conduit in thermal contact with the substrate element.

8. The process according to claim 7, further comprising circulating a cooling medium through said fluid conduit.

9. The process according to claim 1, wherein the micro-structures have a width of between about 10 nm and about 500 nm.

10. A Fischer-Tropsch process comprising the steps of:
a. providing a reactor comprising a substantially nonporous substrate element having a surface and a plurality of elongated micro-structures of catalyst material attached to the substrate surface, the micro-structures comprising:
 i. a width of less than about 1 um;
 ii. a crystal structure having substantially no grain boundaries;
b. injecting a gaseous carbon compound and hydrogen into the reactor such that at least a portion of the carbon compound and hydrogen contact the catalyst material;
c. reacting the carbon compound and hydrogen with the catalyst at above ambient pressure and temperature.

11. The process according to claim 10, wherein the catalyst material comprises cobalt.

12. The process according to claim 10, wherein the carbon compound is carbon monoxide.

13. The process according to claim 10, wherein the pressure is between about 100 to about 500 psi and the temperature is between about 300° F. and about 500° F.

14. The process according to claim 10, further comprising a reactor density of between about 10% and about 90%.