WaterRF 4661: Practical Condition Assessment and Failure Probability Analysis of Small Diameter Ductile Iron Pipe

Survey of Condition Assessment (CA) Consultants/Contractors

Purdue University and Louisiana Tech University are partnering on a research project (WaterRF #4661) to develop a manual of practice (MOP), for the condition assessment of small diameter (12" and smaller) ductile iron pipes. This project aims to collect input from industry, utility and condition assessment practitioners, about identifying failures in small diameter ductile iron pipes, the technology capabilities and barriers to implementation of condition assessment technologies, and developing guidelines for condition assessment programs.

This survey is geared towards **Condition Assessment Contractors and Consultants** and will take approximately **15 minutes** for completion. The information collected is confidential and will be used only for research purposes. Findings of the study will be aggregated and shared with the Water Research Foundation.

Abbreviations:

CA Condition Assessment

DIP Ductile Iron Pipe

ID Internal Diameter

WDS Water Distribution System

Terms:

Small DIP - Ductile iron pipe with an ID of 12 inch (30 cm) or less

Table 1. Small DIP failure modes

Failure Mode	Figure	Definition	
Corrosion Pitting (Internal) Internal Corrosion Pitting		A localized form of corrosion, which manifests itself as pits on the pipe's internal surface.	
Corrosion Pitting (External)	External Corrosion Pitting	A localized form of corrosion, which manifests itself as pits on the pipe's external surface.	
Blowout	Blown out hole	Blowouts occur when corrosion or graphitisation has reduced the strength of the pipe wall in a local area, to a point where a pressure surge causes the wall to rupture.	
Bell Splitting (Split pipe)	Bell Splitting	The crack terminates just below the bell of the pipe.	
Circumferential Failure Circumferential fracture		Cracks propagate around the circumference of the pipe.	
Longitudinal Failure	Longitudinal fracture	The pipe wall fractures parallel to the axis of the pipe.	
Graphitization N/A		A process which removes some of the iron in the pipe, but leaves behind a matrix of graphite flakes that is held together in part by iron oxide.	
Joint Failure	N/A	As distinct from bell splitting or bell shearing which indicate fracture of the bell/socket, joint failure means that the joint is no longer watertight, resulting in leakage. This can undermine the pipe bedding and may produce heave forces in expansive clay soils.	

Questions related to your experience with condition assessment (CA) techniques for CA of small DIP

1. Which of the following Condition Assessment techniques (CA) do you use for small diameter DIP? Among the CA techniques that you use, please rank them according to their frequency of use. (Enter 1 for the most frequently used CA technique, 2 for the second most frequently used CA technique, and so on. Enter N/A if you do not have experience with a particular CA technique)

Condition Assessment (CA) Technique	Frequency (1 – most frequent, 2 – second most frequent, and so on. N/A for no experience)	Comments
Acoustic propagation velocity measurement (APVM)		
Broadband Electro-Magnetics (BEM)		
CCTV inspection technology (CCTV)		
Magnetic Flux Leakage (MFL)		
Manual Pit Depth Measurement		
(MPDM)		
Remote Field Technology (RFT)		
(otherwise known as Remote Field		
Eddy Current)		
Soil Linear Polarization Resistance (SLPR)		
Ultrasonic—Automated, Handheld,		
Phased Array (UA, UH, UPA)		
Ultrasound C-scan (UCs)		
Acoustic leak detection (ALD)		
Others (Please specify)		

2.	. Please list the factors that govern your choice of CA technique.		

- 3. Among the CA techniques that you selected in Question 1, please indicate on a scale of 1 5, the
 - a. Speed of data collection. (1 being very quick, 5 being very time consuming)
 - b. Speed of data interpretation. (1 being very quick, 5 being very time consuming)
 - c. Ease of use in the field (1 being the very easy to use, 5 being the very difficult to use)

- d. Ease of data interpretation (1 being very easy to interpret, 5 being the very difficult to interpret)
- e. Level of operator training that is required (1 being minimal operator training required, 5 being extensive operator training required)

Condition	Speed of	Speed of data	Ease	Ease of data	Level of	Comments
Assessment	data	interpretation	of use	interpretation	operator	
(CA)	collection		in the		training	
Technique			field		required	
APVM						
BEM						
CCTV						
MFL						
MPDM						
RFT						
SLPR						
UA, UH,						
UPA						
UCs						
ALD						
Others						

- 4. Among the CA techniques that you selected in Question 1, please indicate on a scale of 1 to 5, the:
 - a. Equipment cost (1 being very inexpensive, 5 being very expensive)
 - b. Labor cost (1 being very inexpensive, 5 being very expensive)
 - c. Reliability of the data collected (1 being very reliable, 5 being very unreliable

Condition	Equipment cost	Labor cost	Reliability of	Comments
Assessment (CA)			data collected	
Technique				
APVM				
BEM				
CCTV				
MFL				
MPDM				
RFT				
SLPR				
UA, UH, UPA				
UCs				
ALD				
Others				

- 5. Among the CA techniques that you selected in Question 1, please rate their effectiveness in identifying:
 - a. Internal flaws/irregularities (1 being very effective, 5 being very ineffective)
 - b. Mid-wall flaws/irregularities (1 being very effective, 5 being very ineffective)
 - c. External flaws/irregularities (1 being very effective, 5 being very ineffective)

Condition	Internal	Mid-wall	External	Comments
Assessment	flaws/irregularities	flaws/irregularities	flaws/irregularities	
(CA)				
Technique				
APVM				
BEM				
CCTV				
MFL				
MPDM				
RFT				
SLPR				
UA, UH,				
UPA				
UCs				
ALD				
Others				

6. Among the CA techniques that you selected in Question 1, please specify the type of access to the pipeline that is required.

Condition	Type of access that	Comments
Assessment (CA)	is required	
Technique		
APVM		
BEM		
CCTV		
MFL		
MPDM		
RFT		
SLPR		
UA, UH, UPA		
UCs		
ALD		
Others		

7.			pipe CCTV, internal ultr	
8.	Which of the abo	ve mentioned CA tecl	hniques require taking the	e pipeline out of service?
9.		'A techniques that req ypically out of service	uire the pipeline to be tak for?	en out of service, how
CA to	echnique	Length (ft/miles) of the pipeline that is out of service	Time pipeline is out of service	Comments
APVI	M	Sel vice		
BEM				
CCTV				
MFL	·			
MPD	M			
RFT				
SLPR				
	JH, UPA			
UCs	,			
ALD				
Other	·s			
10.	Do any of the CA techniques?	A techniques require e	xcavating the pipe? If yes	, please list those
11.	Do you use techn please list those t		ire the removal of protect	tive coatings? If Yes,

12. Which of the following condition monitoring technique do you use for small diameter DIP? Among the condition monitoring techniques that you use, please rank them according to their frequency of use. (Enter 1 for the most frequently used condition monitoring technique, 2 for the second most frequent, and so on. **Enter N/A if you do not have experience with a particular condition monitoring technique**)

Condition Monitoring Technique	Frequency (1 – most frequent, 2 – second most frequent, and so on. N/A for no experience)	Comments
Corrosion rate sensor		
Acoustic emission sensor		
Magnetostrictive sensor		
Conformable and flexible eddy current array		
Flexible ultrasonic sensor		
Guided wave sensor		
Damage sensor		
Microwave back-scattering sensor		
Fiber optic sensor		
Others (Please specify)		

13. Please rate on a scale of 1-5 (1 representing the most satisfied and 5 representing the least satisfied), your satisfaction with each of the condition monitoring technique that you selected in Question 12, in the following areas: Confidence in data, Ease of data interpretation, and Overall cost.

Condition monitoring technique	Ease of data interpretation	Comments

Questions related to failure modes, and causes of failure in small DIP

14. Which of the following **failure modes** have you observed in small DIPs? Among the failure modes that you have observed, please rank them numerically according to how frequently they occur? (Enter 1 for the most frequent failure mode, 2 for the second most frequent, and so on. **Enter N/A if you have not experienced a particular failure mode in small DIP**)

Failure Mode	Frequency (1 – most frequent, 2 – second most frequent, and so on. N/A for no experience)	Comments
Corrosion Pitting (Internal)		
Corrosion Pitting (External)		
Blowout Holes		
Bell Splitting (Split pipe)		
Circumferential Failure		
Longitudinal Failure		
Graphitization		
Joint Failure		
Others (please specify)		

15. Please rank the following external causes of failure for small diameter DIP, based on their frequency of occurrence? (Enter 1 for the most frequent cause of failure, 2 for the second most frequent cause of failure, and so on **Enter N/A if you have not experienced a particular cause of failure in small DIP**)

Cause of failure (External)	Frequency (1 – most frequent, 2 – second most frequent, and so on. N/A for no experience)	Comments (Please indicate if this is the initial cause or the final trigger leading to failure)
Additional loading to the system (truck loads, frost loads, changes in temperature, or changes in water pressure)		
Third-party damage		
Joint damage		
Manufacturing defects		

Soil Corrosion	
Installation damages	
Others (please specify)	

16. Please rank the following internal causes of failure for small diameter DIP based on their frequency of occurrence? (Enter 1 for the most frequent cause of failure, 2 for the second most frequent cause of failure, and so on. **Enter N/A if you have not experienced a particular cause of failure in small DIP**)

Cause of failure (Internal)	Frequency (1 – most frequent, 2 – second most frequent, and so on. N/A for no experience)	Comments (Please indicate if this is the initial cause or the final trigger leading to failure)
Leakage (That results in pipe		
bedding being washed away)		
Transient loading		
Structural damage (During installation)		
Internal corrosion		
Manufacturing defects		
Others (please specify)		

Name:	
Organization/Agency/Company:	
Role in organization/agency/company:	
Postal Address:	
Email Address:	
Dhono number	

If you are interested in engaging further with the research team on this project and for

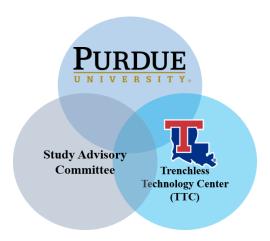
receiving a copy of the final results, please fill in the following information:

Please return the completed survey to Dulcy M. Abraham via email (<u>dulcy@purdue.edu</u>) or via postal mail to: Professor Dulcy M. Abraham. Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907

Name:	s
Organization/Agency/Company:	
Role in organization/agency/company:	
Postal Address:	
Email Address:	
Phone number:	

If you are interested in engaging further with the research team on this project and for

receiving a copy of the final results, please fill in the following information:


Please return the completed survey to Dulcy M. Abraham via email (<u>dulcy@purdue.edu</u>) or via postal mail to: Professor Dulcy M. Abraham. Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907

WaterRF 4661: Practical Condition Assessment and Failure Probability Analysis of Small Diameter Ductile Iron Pipes

Survey of DIP Manufacturers

Purdue University and Louisiana Tech University are partnering on a research project (WaterRF #4661) to develop a manual of practice (MOP), for the condition assessment of small diameter (12" and smaller) ductile iron pipes. This project aims to collect input from industry, utility and condition assessment practitioners, about identifying failures in small diameter ductile iron pipes, the technology capabilities and barriers to implementation of condition assessment technologies, and developing guidelines for condition assessment programs.

This survey is geared towards **Ductile Iron Pipe Manufacturers** and will take approximately **15 minutes** for completion. The information collected is confidential and will be used only for research purposes. Findings of the study will be aggregated and shared with the Water Research Foundation.

Abbreviations:

CA Condition Assessment

DIP Ductile Iron Pipe

ID Internal Diameter

WDS Water Distribution System

Terms:

Small DIP - Ductile iron pipe with an ID of 12 inch (30 cm) or less

Table 1. Small DIP failure modes

Failure Mode	Figure	Definition	
Corrosion Pitting (Internal)	Internal Corrosion Pitting	A localized form of corrosion, which manifests itself as pits on the pipe's internal surface.	
Corrosion Pitting (External)	External Corrosion Pitting	A localized form of corrosion, which manifests itself as pits on the pipe's external surface.	
Blowout	Blown out hole	Blowouts occur when corrosion or graphitisation has reduced the strength of the pipe wall in a local area, to a point where a pressure surge causes the wall to rupture.	
Bell Splitting (Split pipe)	Bell Splitting	The crack terminates just below the bell of the pipe.	
Circumferential Failure Circumferential fracture		Cracks propagate around the circumference of the pipe.	
Longitudinal Failure	Longitudinal fracture	The pipe wall fractures parallel to the axis of the pipe.	
Graphitization	N/A	A process which removes some of the iron in the pipe, but leaves behind a matrix of graphite flakes that is held together in part by iron oxide.	
Joint Failure	N/A	As distinct from bell splitting or bell shearing which indicate fracture of the bell/socket, joint failure means that the joint is no longer watertight, resulting in leakage. This can undermine the pipe bedding and may produce heave forces in expansive clay soils.	

Questions related to failure modes, causes of failure, and condition assessment of small DIP

1. Please rank the following external causes of failure for small diameter DIP, based on their frequency of occurrence? (Enter 1 for the most frequent cause of failure, 2 for the

second most frequent cause of failure, and so on. Enter N/A if you have not experienced a particular cause of failure in small DIP)

Cause of failure (External)	Frequency (1 – most frequent, 2 – second most frequent, and so on. N/A for no experience)	Comments (Please indicate if this is the initial cause or the final trigger leading to failure)
Additional loading to the system (truck loads, frost loads, changes in temperature, or changes in water pressure)		
Third-party damage		
Joint damage		
Manufacturing defects		
Corrosion pitting (external)		
Installation damages		
Others (please specify)		

2. Please rank the following internal causes of failure for small diameter DIP based on their frequency of occurrence? (Enter 1 for the most frequent cause of failure, 2 for the second most frequent cause of failure, and so on. Enter N/A if you have not experienced a particular cause of failure in small DIP)

Cause of failure (Internal)	Frequency (1 – most frequent, 2 – second most frequent, and so on. N/A for no experience)	Comments (Please indicate if this is the initial cause or the final trigger leading to failure)
Leakage (That results in pipe bedding being washed away)		
Transient loading		
Structural damage (During installation)		

Internal corrosion			
Manufacturing defects			
Others (please specify)			
3. Please rank the following f (Enter 1 for the most frequent Enter N/A if you have not	ent failure mode	e, 2 for the second	most frequent, and so on.
Failure Mode	Frequency (1 frequent, 2 – s frequent, and s no experience	second most so on. N/A for	Comments
Corrosion Pitting (Internal)			
Corrosion Pitting (External)			
Blowout Holes			
Bell Splitting (Split pipe)			
Circumferential Failure			
Longitudinal Failure			
Graphitization			
Joint Failure			
Others (please specify)			
4. Which of the following non-destructive non-invasive CA techniques do you recommend for the CA of small diameter DIP? (You may select multiple techniques)			
Condition Assessment (CA) Tec	chnique	Comments	
Acoustic propagation velocimeasurement (APVM)	city		

Broadband Electro-Magnetics (BEM)	
CCTV inspection technology (CCTV)	
Magnetic Flux Leakage (MFL)	
Manual Pit Depth Measurement (MPDM)	
Remote Field Technology (RFT) (otherwise known as Remote Field Eddy Current)	
Soil Linear Polarization Resistance (SLPR)	
Ultrasonic—Automated, Handheld, Phased Array (UA, UH, UPA)	
Ultrasound C-scan (UCs)	
Acoustic leak detection (ALD)	
Others (Please specify)	

5. Which of the following condition monitoring techniques do you recommend for small diameter DIP?

Condition Monitoring Technique
Corrosion rate sensor
Acoustic emission sensor
Magnetostrictive sensor
Conformable and flexible eddy current array
Flexible ultrasonic sensor
Guided wave sensor
Damage sensor

Microwave back-scattering sensor
Fiber optic sensor
Others (Please specify)

Questions related to manufacturing defects, handling instructions, and service life of small DIP

6. Please list the common manufacturing defects in your small DIP, and also indicate their frequency of occurrence on a scale of 1 to 5 (1 being infrequent and 5 being very frequent).

Manufacturing defect	Frequency of defect (1 – infrequent, 5 – very frequent)	Comments

7. What are the failure modes associated with the above manufacturing defects that you listed in Question 6?

Manufacturing defect	Failure mode(s) associated with manufacturing defect	Comments

8. Can the above mentioned manufacturing defects be detected by CA techniques? If Yes, please specify which CA techniques are capable of detecting these manufacturing defects?

Ma	nufacturing defect	CA technique capable of detecting manufacturing defect	Comments		
9.	Do you have any specific hauling/handling requirements/instructions for small diameter DIP? If Yes, please specify what they are?				
10.	10. Is there a standard installation procedure for the small DIP that you manufacture? If Yes, please specify what it is?				
11. Please list the Quality Control/Quality Assurance procedures for the small DIP that you manufacture?					
12.	Do you have estimates of the data?	service life of small DIP? If yes,	please provide us with that		
13.	Do you recommend any tech elaborate on those techniques	niques for extending the life of sm	nall DIP? If yes, please		
14.	Do you recommend the follo a. Installation of corrosio b. Collect/test pipe-to-so c. Performing soil analys d. Stray current interference e. Using cathodic protect f. Installation of pipe join	il potentials: is: nce testing: ion:	ase answer yes/no.		

g.	Installation of polyethylene encasement:	
h.	Relying on the asphaltic coatings:	

i. Operating until failure: