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1
SYSTEM AND METHOD FOR IDENTIFYING
A FOCAL AREA OF ABNORMAL NETWORK
INTERACTIONS IN THE BRAIN

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 61/777,712, filed Mar. 12, 2013, entitled
“Method for Localizing the Epileptogenic Focus from
Interictal Brain Signal Processing,” the entirety of which is
hereby incorporated by reference for all purposes.

TECHNICAL FIELD

The present disclosure relates generally to identifying a
focal area of abnormal brain interactions and, more specifi-
cally, to systems and methods that can identify a focal area
of abnormal brain interactions from time series data
recorded during a resting period.

BACKGROUND

Epilepsy is among the most common disorders of the
nervous system, affecting 1-2% of the world’s population. It
is a unique paroxysmal disorder characterized by chronically
recurrent disruptions of the brain’s normal activity (sei-
zures), resulting from excessive electrical discharges of
abnormal groups of neurons (the epileptogenic focus). The
poor quality of life and psychosocial functioning associated
with epilepsy exacts an enormous toll on patients and their
families. Epilepsy has a substantial impact on society
because patients lose employment potential while incurring
high bills for their medical care.

Despite many decades of research and the development of
new antiepileptic drugs, a large number (30-40%) of patients
suffer from inadequately controlled seizures or undesirable
side effects from their medication. For these patients, sei-
zures can be controlled by surgical treatment (e.g., resective
epilepsy surgery) and/or neuromodulation (e.g., targeted
electrical stimulation). However, these treatments are only
effective in patients in which the epileptogenic focus can be
localized with a high degree of confidence. Neuro-recording
methods (e.g., long-term electroencephalographic (EEG)
recordings, magnetic resonance imaging (MRI), positron
emission tomography (PET), subtraction ictal single photon
emission computed tomography (SPECT) co-registered with
MRI (SISCOM), and magnetoencephalography (MEG)) can
be used to identify the epileptogenic focus; however, such
neuro-recording studies are often inconclusive or negative
since seizures typically occur unpredictably and without a
warning, and interictal periods may not exhibit abnormali-
ties (e.g., interictal spikes).

SUMMARY

The present disclosure relates generally to identifying a
focal area of abnormal brain interactions and, more specifi-
cally, to systems and methods that can identify a focal area
of abnormal brain interactions from time series data
recorded during a resting period.

In one aspect, the present disclosure can include a system
that identifies a focal area of abnormal brain interactions in
a subject. The system can include a non-transitory memory
storing computer-executable instructions and a processor
that executes the computer-executable instructions to at
least: receive time series data from a plurality of regions in
a brain of the subject recorded during a resting period;
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2

determine an information inflow associated with each of the
plurality of regions based on the time series data; and
identify the focal area of the abnormal brain interactions as
one of the plurality of regions having a maximum informa-
tion inflow.

In another aspect, the present disclosure can include a
method for identifying a focal area of abnormal brain
interactions in a subject. The method can include steps that
can be performed by a system that includes a processor. The
steps can include: receiving time series data from a plurality
of regions in a brain of the subject recorded during a resting
period; determining an information inflow corresponding to
each of'the plurality of regions based on the time series data;
comparing, by the system, the information inflow corre-
sponding to each of the plurality of regions; and identifying
the focal area as one of the identified regions exhibiting a
maximum information inflow.

In a further aspect, the present disclosure can include a
method for diagnosing a neurological disorder characterized
by one or more focal areas of abnormal brain interactions in
a subject. The method can include steps that can be per-
formed by a system that includes a processor. The steps can
include: receiving time series data from a plurality of
regions in the brain of the subject recorded during a resting
period; determining an information inflow corresponding to
each of the plurality of regions; comparing the information
inflow associated with each of the regions to determine the
presence of one or more focal areas exhibiting a maximum
information inflow; and diagnosing the neurological disor-
der based on the presence of one or more focal areas.

In another aspect, the present disclosure can include a
system for diagnosing a neurological disorder characterized
by one or more focal areas of abnormal brain interactions in
a subject. The system can include a non-transitory memory
storing computer-executable instructions and a processor
that executes the computer-executable instructions to at
least: receive time series data from a plurality of regions in
the brain of the subject recorded during a resting period;
determine an information inflow corresponding to each of
the plurality of regions; compare the information inflow
associated with each of the regions to determine the pres-
ence of one or more focal areas exhibiting a maximum
information inflow; and diagnose the neurological disorder
based on the presence of one or more focal areas.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features of the present disclosure
will become apparent to those skilled in the art to which the
present disclosure relates upon reading the following
description with reference to the accompanying drawings, in
which:

FIG. 1 is a schematic block diagram showing a system
that can identify a focal area of abnormal brain interactions
in a subject in accordance with an aspect of the present
disclosure;

FIG. 2 is a schematic block diagram showing an infor-
mation inflow determination unit that can be part of the
system shown in FIG. 1;

FIG. 3 is a schematic block diagram showing a focal area
identification unit that can be part of the system shown in
FIG. 1,

FIG. 4 is a process flow diagram illustrating a method for
identifying a focal area of abnormal brain interactions in a
subject in accordance with another aspect of the present
disclosure;
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FIG. 5 is a process flow diagram illustrating a method for
diagnosing a neurological disorder in a subject in accor-
dance with another aspect of the present disclosure;

FIG. 6 shows an example of epileptogenic focus local-
ization results using the technique for identification of a
focal area from interictal iEEG data obtained from three
subjects with temporal lobe epilepsy;

FIG. 7 shows example steps of the technique used in
connection with interictal MEG data;

FIG. 8 shows example results of epileptogenic focus
localization using the technique for non-invasive identifica-
tion of a focal area from interictal MEG data superimposed
on post-operative MRI images; and

FIGS. 9-13 show example concordant results of clinical
evaluation and epileptogenic focus localization using the
technique for non-invasive identification of a focal area for
various patients.

DETAILED DESCRIPTION
1. Definitions

In the context of the present disclosure, the singular forms
a,” “an” and “the” can also include the plural forms, unless
the context clearly indicates otherwise. The terms “com-
prises” and/or “comprising,” as used herein, can specitfy the
presence of stated features, steps, operations, elements,
and/or components, but do not preclude the presence or
addition of one or more other features, steps, operations,
elements, components, and/or groups. As used herein, the
term “and/or” can include any and all combinations of one
or more of the associated listed items. Additionally, although
the terms “first,” “second,” etc. may be used herein to
describe various elements, these elements should not be
limited by these terms. These terms are only used to distin-
guish one element from another. Thus, a “first” element
discussed below could also be termed a “second” element
without departing from the teachings of the present disclo-
sure. The sequence of operations (or acts/steps) is not
limited to the order presented in the claims or figures unless
specifically indicated otherwise.

As used herein, the term “focal area” can refer to an area
of the brain (or “hot spot”) where abnormal brain interac-
tions are initiated or localized. The term “focal area” can
include a single focal area, bifocal areas (e.g., two focal
areas), or multifocal areas (e.g., more than two focal areas).

As used herein, the term “brain interactions™ can refer to
bidirectional relations between one or more electrical poten-
tials, magnetic field potentials, and/or currents generated by
one or more regions of the brain and detectable by a
neuro-recording modality. In an example, the brain interac-
tions can be abnormal brain interactions between regions of
the brain that can be indicative of abnormal brain activity.
The terms “abnormal brain interactions” and “abnormal
network interactions in the brain” can be used interchange-
ably herein.

As used herein, the term “neurological disorder” can refer
to a disorder of the nervous system characterized by abnor-
mal brain activity. Examples of neurological disorders
include, but are not limited to, paroxysmal neurological
disorders (e.g., epilepsy, multiple sclerosis, encephalitis,
traumatic brain injury, stroke, trigeminal neuralgia, etc.),
conditions that include a lack of awareness, conditions that
include a lack of cognition, neurodegenerative diseases,
psychiatric disorders, psychological disorders, obesity dis-
orders, apnea disorders, Autism spectrum disorders, and
Alzheimer’s disease.
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As used herein, the term “neuro-recording modality” can
refer to a recording modality that can record time series data
corresponding to biosignals (e.g., electrical potentials) emit-
ted from, or associated with, one or more regions of the
brain. In some instances, the neuro-recording modality can
include two or more recording channels (e.g., corresponding
to two or more regions of the brain). Examples of recording
modalities can include, but are not limited to, electroen-
cephalogram (EEG), magnetoencephlogram (MEG), ther-
mal imaging, and functional magnetic resonance imaging
(fMRI).

As used herein, the term “resting period” can refer to a
period of time between instances of abnormal brain inter-
actions during which a subject is free of abnormal behav-
ioral symptoms, which are typically associated with abnor-
mal brain interactions. In some instances, the resting period
can refer to a period of time that is characterized by normal
behavior during which the subject may experience some
brain interactions that do not produce visible behavioral
symptoms. For example, in epilepsy, the resting period can
be referred to as the “interictal period” between seizures. A
subject with epilepsy can be seizure-free during the resting
period, and yet may exhibit abnormal epileptiform activity
(e.g., interictal epileptic spikes).

As used herein, the term “information inflow” can refer to
a characteristic of a brain region that reflects the flow of
information to the brain region from other brain regions.
Information inflow can be based on directional connectivity
between the brain region and at least one other brain region.

As used herein, the term “average information inflow”
can refer to the information inflow to certain brain region
that is averaged over a certain time period.

As used herein, the terms “directed connectivity” and/or
“directional connectivity” can refer to an estimate of func-
tional connectivity between a brain region and at least one
other brain region. In one example, directional connectivity
can be derived from time series signals, recorded from a
neuro-recording modality from multiple brain regions, via
multivariate autoregressive modeling of the time series
signals. In another example, directional connectivity can be
derived from a time series signal that contains activity from
a plurality of brain regions and is recorded from a neuro-
recording modality, via multivariate autoregressive model-
ing of the time series signal.

As used herein, the term “subject” can refer to any
warm-blooded organism including, but not limited to, a
human being, a pig, a rat, a mouse, a dog, a cat, a goat, a
sheep, a horse, a monkey, an ape, a rabbit, a cow, etc. The
terms “subject” and “patient” can be used interchangeably
herein.

II. Overview

The present disclosure relates generally to identifying a
focal area of abnormal brain interactions and, more particu-
larly to systems and methods that can identify a focal area
of abnormal brain interactions from time series data
recorded during a resting period. In some instances, the
systems and methods described herein can employ a com-
puter-implemented technique that can identify a focal area
(e.g., one or more epileptogenic foci) from time series data
recorded during a resting period. During the resting period,
the focal area can be held in check by feedback circuits in
the brain that continuously prevent the focal areas from
becoming unstable and producing brain interactions (e.g.,
epileptic seizures and other epileptiform activities). Due to
this control, the focal area can exhibit a high information



US 9,730,628 B2

5

inflow from the feedback circuits holding it in check. The
systems and methods described herein can be used to
identify the region (or regions) of the brain with a maximum
information inflow during the resting period as the region
containing the focal area. As described in more detail below,
the present disclosure employs measures of directional con-
nectivity to estimate and quantify the strength of information
flow between different brain regions to determine the focal
area. The average information inflow to each region can then
be used to identify the focal area as the region exhibiting the
greatest number of instances of maximum average inflow.
The systems and methods of the present disclosure can
provide a technique for identifying a focal area of abnormal
brain interaction. Advantageously, the present disclosure can
facilitate advances in the diagnosis and treatment of neuro-
logical disorders characterized by abnormal brain interac-
tions by, for example: complementing the current clinical
practice diagnostic procedures for standard-of-care focus
identification; quickly determining patients that may require
invasive monitoring; quickly identifying the location of the
focal area in patients with drug-resistant neurological dis-
orders; improving the treatment of neurological disorders by
better delineating the extent of surgical resection or target
for implantable stimulators and drug infusion devices;
studying the dynamics of the focal area over time to provide
insights into the mechanism of generation of the abnormal
brain interactions; developing biomarkers and surrogate
markers for the presence of abnormal neural networks in
high risk patients who are susceptible of developing a
neurological disorder in the future; and creating an outpa-
tient setting for focal area localization from routine tests.

III. Systems

One aspect of the present disclosure can include a system
that can identify a focal area of abnormal brain interactions
in a subject from time series data recorded during a resting
period. Although not wishing to be bound by theory, it is
believed that the focal area is held at bay during the resting
period by surrounding controlling neuronal networks within
the brain. The focal area can be identified from time-series
data as the area in the brain with the maximum information
inflow during the resting period. Advantageously, this per-
mits the focal area to be identified objectively (e.g., without
any subjective bias defining what is abnormal) and without
requiring occurrence of the abnormal brain interactions.

FIG. 1 illustrates an example of a system 10 that can
identify a focal area (FA), according to an aspect of the
present disclosure. FIG. 1, as well as associated FIGS. 2-3,
are schematically illustrated as block diagrams with the
different blocks representing different components. The
functions of one or more of the components can be imple-
mented by computer program instructions. These computer
program instructions can be provided to a processor of a
general purpose computer, special purpose computer, and/or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer and/or other programmable data
processing apparatus, create a mechanism for implementing
the functions of the components specified in the block
diagrams.

These computer program instructions can also be stored in
a non-transitory computer-readable memory that can direct
a computer or other programmable data processing appara-
tus to function in a particular manner, such that the instruc-
tions stored in the non-transitory computer-readable
memory produce an article of manufacture including
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instructions, which implement the function specified in the
block diagrams and associated description.

The computer program instructions can also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer-implemented process such that the
instructions that execute on the computer or other program-
mable apparatus provide steps for implementing the func-
tions of the components specified in the block diagrams and
the associated description.

Accordingly, the system 10 described herein can be
embodied at least in part in hardware and/or in software
(including firmware, resident software, micro-code, etc.).
Furthermore, aspects of the system 10 can take the form of
a computer program product on a computer-usable or com-
puter-readable storage medium having computer-usable or
computer-readable program code embodied in the medium
for use by or in connection with an instruction execution
system. A computer-usable or computer-readable medium
can be any non-transitory medium that is not a transitory
signal and can contain or store the program for use by or in
connection with the instruction or execution of a system,
apparatus, or device. The computer-usable or computer-
readable medium can be, for example but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus or device. More specific
examples (a non-exhaustive list) of the computer-readable
medium can include the following: a portable computer
diskette; a random access memory; a read-only memory; an
erasable programmable read-only memory (or Flash
memory); and a portable compact disc read-only memory.

As shown in FIG. 1, one aspect of the present disclosure
can include a system 10 configured to identify a FA of
abnormal brain interactions in a subject. The system 10 can
identify the FA in an invasive manner and/or a non-invasive
manner during the resting period. As noted above, identifi-
cation of the FA advantageously can facilitate the develop-
ment of future diagnostics and treatments (e.g., better tar-
geted treatments) for the abnormal brain interactions.

In one example, the system 10 can be utilized in epileptic
patients to identify the epileptogenic focus (e.g., in an
invasive manner and/or a non-invasive manner). Identifica-
tion of the epileptogenic focus can facilitate advances in the
diagnosis and treatment of epilepsy by, for example:
complementing the current clinical practice diagnostic pro-
cedures for standard-of-care focus identification; quickly
determining patients that may require invasive monitoring;
quickly identifying the location of the epileptogenic focus in
patients with drug-resistant focal epilepsies; improving the
treatment of epilepsy by better delineating the extent of
surgical resection or target for implantable stimulators and
drug infusion devices; studying the dynamics of the epilep-
togenic focus over time to provide insights into the mecha-
nism of epileptogenesis; developing biomarkers and surro-
gate markers for the presence of epileptogenic networks in
high risk patients who are susceptible of developing epilepsy
in the future; and creating an outpatient setting for focus
localization from routine tests.

The system 10 can include components including at least
a receiver 12, an information inflow determination unit 14,
and a focal area identification unit 16. One or more of the
components can include instructions that are stored in a
non-transitory memory 18 and executed by a processor 17.
Each of the components can be in a communicative rela-
tionship with one or more of the other components, the
processor 17, and/or the memory 18 (e.g., via a direct or
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indirect electrical, electromagnetic, optical, or other type of
wired or wireless communication) such that an action from
the respective component causes an effect on one or more of
the other components.

The receiver 12 can be configured to receive time series
data (X(t)) from a plurality of regions in a brain of the
subject recorded during a resting period. For example, each
of the plurality of regions can correspond to a position of a
unique recording electrode and/or a reconstructed source of
brain activity. While the time series data (X(t)) recorded
during the resting period can include abnormal activity
during the resting period (e.g., epileptiform activity), the
abnormal activity is not required within the time series
signal (X(t)). In other words, the time series data (X(t)) can
include normal brain activity. In one example, the time series
data (X(t)) can be recorded by a neuro-recording modality
that includes a plurality of recording channels (e.g., corre-
sponding to the plurality of regions of the brain) at different
places in space (e.g., spatial recording positions).

In some instances, the time series data (X(t)) can be an
n-dimensional time series vector representation of different
signals corresponding to n different spatial locations:

XO=X,050, . . . X,0),

where n corresponds to a total number of different spatial
locations (corresponding to regions of the brain) where time
series signals were recorded, and each vector component
X (1) denotes the signal recorded at the i recording site.

The input time series data (X(t)) can include raw time
series signals obtained from or generated by a neuro-
recording modality. In one example, the neuro-recording
modality can be EEG, and the different vector components
of the input time series data (X(t)) can correspond to
different locations of one or more EEG sensors. In another
example, the neuro-recording modality can be MEG, where
the receiver 12 can preprocess the raw input time series data
(X(1)) into preprocessed time series data (X*(t)). The term
“preprocessed time series data (X*(t))” can refer to input to
the information inflow determination unit 14 to prevent
confusion with the time series data (X(t)) that is input to the
receiver 12.

The preprocessed time series data (X*(t)) can include
processed signals that are generated from electromagnetic
sources in brain regions estimated via the fitting of the raw
data X(t) by a brain-source model (e.g., via a type of inverse
modeling that may include weighted minimum norm esti-
mates (WMNE), linearly constrained minimum variance
(LCMV) beamformers, low resolution electrical tomogra-
phy (LORETA), etc.). Such a brain-source model can be
used to estimate the position and orientation of possible
sources (e.g., current dipoles) in the brain that can explain
the observed raw signals X(t) over time. For example, the
estimates of the position and orientation of such brain-
sources can be assigned by three-dimensional MRI images
of the subject.

The receiver 12 can provide the time series data (X(t))
and/or the preprocessed data (X*(t)) to an information
inflow determination unit 14. For example, the receiver 12
can divide the time series data (X(t)) into a series of time
epochs so that the information inflow determination unit 14
can perform its analysis for the different epochs (e.g., each
epoch corresponds to a time period in which the maximum
information inflow can be determined). The epochs can be
non-overlapping or random (e.g., containing one or more
overlapping portions). For simplicity of illustration and
explanation, the receiver 12 is illustrated as providing the
preprocessed data (X*(t)) to the information inflow deter-
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mination unit 14. Although the preprocessed time series data
(X*(1)) is referenced herein, it will be appreciated that the
receiver 12 need not perform the preprocessing step and can
provide the time series data (X(t)) to the information inflow
determination unit 14. The preprocessed time series data
(X*(t)) possesses vector properties similar to those as
defined for the time series data (X(t)).

The information inflow determination unit 14 can be
configured to execute a localization technique on the pre-
processed time series data (X*(t)) that is different from
traditional FA localization techniques. Traditional tech-
niques process the information outflow from the FA during
abnormal brain activity. During a seizure, for example, the
epileptic activity starts from the FA and then spreads to other
regions of the brain. Such epileptic activity is irregular and
unpredictable. In contrast, during the resting period, the FA
is held at bay by controlling neuronal networks. Unlike
conventional processing techniques, the information inflow
determination unit 14 is configured to determine information
inflow associated with each of the brain regions (F(t)) based
on the preprocessed time series data (X*(t)).

The information inflow associated with a particular brain
region can be determined from inflows to the particular brain
region from one or more of the other regions of the brain. To
shorten the associated processing time, the information
inflow associated with a particular region can also be
determined from inflows from a portion of the plurality of
regions of the brain that is less than all of the regions (e.g.,
a finite number of neighboring regions to the particular
region).

As shown in FIG. 2, the information inflow determination
unit 14 can include an inflow estimation unit 22 and a
network connectivity unit 24. The inflow estimation unit 22
can be configured to simulate a model representation of the
preprocessed time series data (X*(t)). The inflow estimation
unit 22 can estimate a model representation of the prepro-
cessed time series data (X*(t)). The model representation
can be an autoregressive model that allows the preprocessed
time series data (X*(t)). For example, the model represen-
tation can be a vector autoregressive model (VAR) or a
multivariate autoregressive model (MVAR).

In one example, the autoregressive model VAR(p) can be
constructed of an order p (where p is determined based on
an autocorrelation of the preprocessed time series data
(X*(t)). For example, an autoregressive model can be
expressed as:

P Equation 2
VAR(p) = Z BOX #(t— 1) + 8(0),

=1

where B(t) represents the nxn coeflicient matrices of the
model with residuals e(t) ideally following a multivariate
Gaussian white noise process.

The network connectivity unit 24 can be configured to
quantify the network connectivity in the frequency domain
based on the model representation of the preprocessed time
series data (X*(t)). The network connectivity unit 24 can be
configured to quantify the network connectivity (interaction
between brain regions) in the frequency domain based on the
model representation (e.g., VAR(p)). The term “frequency
domain” can refer to the behavior of the biological signal
rather than the time period of the recording (e.g., high
frequency relates to a rapidly changing signal and low
frequency relates to a slowly changing signal). The interac-
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tion between brain regions can be estimated by one or more
of the following: a directional measure (e.g., capturing the
directionality of the flows); a non-directional measure (e.g.,
not capturing the directionality of the flows); a direct mea-
sure (e.g., capturing direct interactions); and/or a non-direct
measure (e.g., capturing direct and indirect interactions).

In one example, the network connectivity unit 24 can
apply a measure of the generalized partial directional coher-
ence (GPDC) to capture the interactions between the various
brain regions. GPDC is a normalized version of partial
directional coherence (PDC) that has been used in many
applications for the study of brain dynamics. GPDC pro-
vides a measure for the direct linear influence of region X;
on region X, at frequency f conditioned by the rest of the
signal variables:

[B{(LI

aij
IBjk(f)I?
o2kk

where 0y; is obtained from the covariance matrix of &(t),
S=[oy] and B,(f) is the (ij)" element of the matrix

Equation 3

GPDCij(f) =

i, j=l-m>

B(fy=1-) B@e ™,

»
-1
where 1 is the nxn identity matrix.

The network connectivity unit 24 can estimate the average
directional connectivity index between nodes (correspond-
ing to information flows for the regions of the brain) based
on the quantification of the network connectivity (e.g., from
the GPDC) over a given frequency range (f, f,) Hz. The
information inflow to a brain region A from another brain
region B can be the portion of information content (e.g.,
behavior, content, etc.) of the brain region A that is due to or
can be explained from its directional connectivity to brain
region B. The directional connectivity from brain region B
to brain region A can be the estimate of functional connec-
tivity from brain region B to brain region A from appropriate
mathematical analysis of the time series signals recorded in
regions A and B (e.g., via multivariate autoregressive mod-
eling of the involved time series signals).

The information inflow to a particular region of the brain
can be determined by a weighted sum of the information
inflows from the rest of the nodes j. For example, assuming
a simple sum:

n Equation 4
InDi = Z (GPDCj - i(f)).
=

To increase the accuracy associated with the identification
of the FA, the statistically significant information inflows
(e.g., p<0.05) between the regions can be counted in the
determination of information inflow to each region. One
way the statistical significance of an information inflow can
be evaluated is via a surrogate data scheme. For example,
estimation of information inflows from data that is surrogate
for real signals for which inter-sample dependencies have
been artificially randomized.
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The average information inflows for all of the nodes (F(t))
can be provided by the information inflow determination
unit 14 to the focal area identification unit 16. The focal area
identification unit 16 can be configured to identify the FA of
the abnormal brain interactions as one or more of the
plurality of regions having a maximum information inflow
(e.g., by comparing the information inflow of each of the
plurality of regions).

As shown in FIG. 3, the focal area identification unit 16
can include a comparison unit 32 and a ranking unit 34. The
comparison unit 32 can compare the value of the informa-
tion inflow of each of the regions during one or more time
periods (e.g., epochs) to determine the region exhibiting a
maximum inflow value. The comparison unit 32 can com-
pare the values of information flow by employing a statis-
tical test associated with a property of information inflow
(e.g., an outlier detection test). One example of an outlier
detection test is a test of Grubb’s outliers at a significance
level a.

The ranking unit 34 can determine the region most
frequently exhibiting a maximum information inflow value
(e.g., the first maximum information inflow value, the first
two maximum information inflow values, the first three
maximum information inflow values, etc.), and identify this
region as the FA of abnormal brain activity. For example, the
ranking unit 34 can construct a histogram of the information
inflow associated with the plurality of regions, and then
identify the region with the maximum information flow
based on the histogram. The region with the maximum
information flow can be identified as the FA. For the
identification of the FA, the region of the brain with the
maximum information inflow can be estimated over at least
a portion of the plurality of brain regions. The identification
of the FA can also be based on comparison between ipsi-
lateral and contralateral brain regions to determine the
maximum inflow.

IV. Methods

Another aspect of the present disclosure can include
methods that can identify a FA of abnormal brain interac-
tions in a subject from time series data recorded during the
resting period. An example of a method 40 that can identify
the FA (e.g., invasively and/or non-invasively) is shown in
FIG. 4. Another example of a method 50 that can diagnose
a neurological disorder in a subject based on the identifica-
tion of the FA is shown in FIG. 5.

The methods 40 and 50 of FIGS. 4 and 5, respectively, are
illustrated as process flow diagrams with flowchart illustra-
tions. For purposes of simplicity, the methods 40 and 50 are
shown and described as being executed serially; however, it
is to be understood and appreciated that the present disclo-
sure is not limited by the illustrated order as some steps
could occur in different orders and/or concurrently with
other steps shown and described herein. Moreover, not all
illustrated aspects may be required to implement the meth-
ods 40 and 50.

One or more blocks of the respective flowchart illustra-
tions, and combinations of blocks in the block flowchart
illustrations, can be implemented by computer program
instructions. These computer program instructions can be
stored in memory and provided to a processor of a general
purpose computer, special purpose computer, and/or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer and/or other programmable data
processing apparatus, create mechanisms for implementing
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the steps/acts specified in the flowchart blocks and/or the
associated description. In other words, the steps/acts can be
implemented by a system comprising a processor that can
access the computer-executable instructions that are stored
in a non-transitory memory.

The methods 40 and 50 of the present disclosure may be
embodied in hardware and/or in software (including firm-
ware, resident software, micro-code, etc.). Furthermore,
aspects of the present disclosure may take the form of a
computer program product on a computer-usable or com-
puter-readable storage medium having computer-usable or
computer-readable program code embodied in the medium
for use by or in connection with an instruction execution
system. A computer-usable or computer-readable medium
may be any non-transitory medium that can contain or store
the program for use by or in connection with the instruction
or execution of a system, apparatus, or device.

Referring to FIG. 4, an aspect of the present disclosure
can include a method 40 for identifying a focal area of
abnormal brain interactions in a subject from time series
data recorded from at least two regions of the brain during
a resting period. The time series data can be recorded by a
neuro-recording modality (e.g., EEG, MEG, thermal imag-
ing, IMRI, etc.)

At 42, time series data (X(t)) from a plurality of regions
in a brain of the subject recorded during a resting period can
be received (e.g., by receiver 12). For example, each of the
plurality of regions represented by the time series data can
correspond to a position of a unique recording electrode
and/or a reconstructed source of brain activity. While the
time series data (X(t)) recorded during the resting period can
include abnormal activity (e.g., epileptiform activity), the
abnormal activity is not required within the time series
signal (X(t)). In other words, the time series data (X(t)) can
include entirely normal brain activity. In some instances, the
time series data (X(t)) can be an n-dimensional time series
vector representation of different signals corresponding to n
different spatial locations (e.g., X(1)—=(X,(1), X,(1), . . .,
X,, ). The input time series data (X(t)) can include raw
time series signals obtained from or generated by a neuro-
recording modality.

At 44, an information inflow corresponding to each of the
plurality of regions can be determined (e.g., by inflow
estimation unit 22 of information inflow determination unit
14) based on the time series data. The information inflow
associated with a particular brain region can be determined
from inflows from one or more of the other regions of the
brain. To speed up processing time, the information flow
associated with a particular region can also be determined
from inflows from a portion of the plurality of regions of the
brain less than all of the regions (e.g., a finite number of
neighboring regions to the particular region).

The information inflow can be determined based on a
simulation and/or estimation of a model representation of
the time series data (X(t)). The model representation can be
an autoregressive model that allows the time series data
(X*(1)). For example, the model representation can be a
vector autoregressive model (VAR) or a multivariate autore-
gressive model (MVAR). In an example, the autoregressive
model VAR(p) can be constructed of an order p (where p is
determined based on an autocorrelation of the time series
data (X(1))).

Network connectivity can be quantified based on the
model representation of the time series data (X(t)). In one
example, a measure of the generalized partial directional
coherence (e.g., GPDC that provides a measure of direct
linear influence of different regions on one another) can be
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applied to capture the interactions between the various brain
regions. The average directional connectivity index between
nodes (corresponding to information flows for the regions of
the brain) can be based on the quantification of the network
connectivity (e.g., from the GPDC) over a given frequency
range (f;, f,) Hz.

At 46, the information inflow corresponding to each of the
plurality of regions can be compared (e.g., by network
connectivity unit 24 of information inflow determination
unit 14). The information inflow to a particular region of the
brain can be determined by averaging over all of the
information inflows from the rest of the nodes. To increase
the accuracy associated with the identification of the FA,
only the statistically significant information inflows (e.g.,
p<0.05) between the regions can be counted in the determi-
nation of information inflow to each region. One way the
statistical significance of an information inflow can be
evaluated is via a surrogate data scheme. For example,
estimation of information inflows from data that is surrogate
for real signals for which inter-sample dependencies have
been artificially randomized.

At 48, the FA can be identified (e.g., by focal area
identification unit 16) as one of the identified regions
exhibiting a maximum information inflow. The value of the
information inflow of each of the regions during one or more
time periods can be compared to values associated with
other regions to determine the region exhibiting a maximum
inflow value (e.g., based on a statistical test associated with
a property of information inflow, such as an outlier detection
test). The region most frequently exhibiting the maximum
information inflow value can be identified as the FA of
abnormal brain interactions (e.g., from a histogram of the
information inflow associated with the plurality of regions).
For the identification of the FA, the region of the brain with
the maximum information inflow can be estimated over all
of the plurality of brain regions. The identification of the FA
can also be based on comparison between ipsilateral and
contralateral brain regions to determine the maximum
inflow. Identification of the FA can facilitate the develop-
ment of diagnostics and treatments for the abnormal brain
interactions.

Referring now to FIG. 5, another aspect of the present
disclosure can include a method 50 for diagnosing a neu-
rological disorder characterized by one or more focal areas
of abnormal brain interactions in a subject. Steps 52-56 are
similar to steps 42-48 of the method 40 illustrated in FIG. 4.
For example, at 52, time series data can be received (e.g., by
receiver 12) from a plurality of regions in the brain of a
subject recorded during a resting period. At 54, an informa-
tion flow can be determined (e.g., by information inflow
determination unit 14) corresponding to each of the plurality
of regions. At 56, the information flow associated with each
of the regions can be compared (e.g., by focal area identi-
fication unit 16) to determine the presence of one or more
focal areas exhibiting a maximum information flow.

Based on the presence of the FA, at 58, a neurological
disorder associated with the abnormal brain interactions can
be diagnosed. For example, the diagnosis can be based on a
medical standard and/or a comparison to a stored historical
data. The diagnosis can, in an example, be based on the
location of the focal area and/or a property associated with
the maximum information inflow to the region identified as
the FA.
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V. Examples

The following examples are for the purpose of illustration
only and are not intended to limit the scope of the appended
claims.

Example 1

This example shows that the interictal focal area identi-
fication approach described in connection with the systems
and methods above (e.g., based on the measure of GPDC)
can localize the epileptogenic focus from raw time series
invasive EEG (iEEG) data recorded intracranially during
interictal periods without the presence of any epileptiform
activity (e.g., epileptic spikes or high frequency oscillations)
in the data.

Methods
Subject Selection

The EEG recordings used for the time series data corre-
spond to the resting period of long-term intracranial EEG
recordings (phase II) from 3 subjects with focal temporal
lobe epilepsy (characteristics presented in Table 1 below).

TABLE 1

Subject Clinical Data

iEEG recording Clinically
duration assessed
Subject (hours) Age Gender focus
1 334 19 M RTD
2 18 38 F LTD
3 156 25 M LTD

Recording sites were in the left and right hippocampus
(LTD, RTD; 6 electrodes each), left and right sub-temporal
cortex (LST, RST; 4 electrodes each) and left and right
orbitofrontal cortex (LOF, ROF; 4 electrodes each). Seizure
epochs were excluded from the time series data.
Focal Area Identification

Let X()=(X (1), . . ., X,,(t))' be an n-dimensional time
series vector representation of recorded EEG signals at n
brain sites, with each vector component X,(t) denoting the
signal recorded at the i recording site. A vector autoregres-
sive model VARM(p) of order p for X can be constructed as:

P Equation 5
VAR(p) = Z BOX #(t— 1) + 8(0),

=1

where B(t) represents the nxn coeflicient matrices of the
model with the residuals €(t) ideally following a multivariate
Gaussian white noise process.

The GPDC that measures the direct effect of component
process j to i at frequency f is defined as:

1Bij(f)l
aij

Bik(F)I*
o2kk

Equation 6

GPDCij(f) =

where 0y; is obtained from the covariance matrix of &(t),
S=[0,];, j=1.» and B,(1) is the (i,))" element of the matrix
B(f)=I-27__,B(t)e"**, where I is the nxn identity matrix.
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GPDC provides a measure for the direct linear influence
of X; on X, at frequency f, conditioned on the rest of the
signal variables. In the application of the GPDC measure to
brain dynamics, the brain is treated as a network of bi-
directionally connected nodes, each one corresponding to a
recording site. The EEG is divided into non-overlapping
epochs of T seconds in duration and the GPDC functions are
estimated within each epoch. The average GPDC over a
given frequency range (f},f,) Hz is estimated and denoted by
(GPDC,_.,(D)sers - This quantity is the “directional con-
nectivity index” between nodes. Finally, the inflow at a
node/site 1 is estimated by averaging over all inflows
towards 1 from the rest of the nodes jas 2, _,"(GPDC,__,
(1)) and the site with the highest inflow within a T-sec epoch
is found.

By repeating the procedure for all available epochs, a
histogram of the percentage of time that each site is found
to have the highest inflow is constructed. Using Grubbs’ test
for outliers at a significance level a we detect the sites with
the highest inflow compared to the rest of the sites over the
period of recording.

Results

The results of the application of the interictal focal area
identification approach using iEEG data for the three sub-
jects with focal temporal lobe epilepsy are presented in FIG.
6. Values of p=7 and T=10 sec were used for estimation of
GPDC, in agreement with ones used in the past for the
analysis of brain dynamics. The frequency range selected
was 0.1-50 Hz and for the outlier test, o was set to 0.01.

In FIG. 6, panel (a) shows the full directional connectivity
indices for subject 1. There are strong connections within the
right hippocampus (RTD; focus) and moderate connections
between the right hippocampus and the right orbitofrontal
cortex (ROF). Panels (b)-(d) show the percentage of time
each of the brain sites has the highest inflow of information.
In 2 out of the 3 subjects (e.g., panels b and ¢ of FIG. 6), the
detected focal sites by the interictal focal area identification
approach were within the clinically assessed focal region. In
the third subject, as shown in panel d, no brain site had
statistically significant larger inflow than the rest at the
a=0.01 level, even though a clinically assessed focal site
(LTD3) did exhibit the largest information inflow. It is
interesting to also note that for this subject 3, although the
majority of his clinical seizures (6 out of 7) originated from
LTD, most of the subclinical seizures (14 out of 16) origi-
nated from RTD.

Example 2

This example shows that the interictal focal area identi-
fication approach described in connection with the systems
and methods above (e.g., based on the measure of GPDC)
can localize the epileptogenic focus from short term (1 hour)
non-invasive MEG data in connection with a subject’s MRI.

Methods
Subject Selection

Continuous MEG recordings from two subjects with
neocortical epilepsy and non-lesional MRI (characteristics
presented in Table 2 below) were used for this study.
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TABLE 2

Subject Clinical Data

Subject Clinically

(gender, Clinical MEG assessed

age) MRI Localization Gender focus Pathology
P1 Negative  Concordant (C) M RBT Gliosis
M, 25)

P2 (F, 41) Negative Discordant (D) F RF FCD

MEG Recording

MEG was recorded using a 306 channel Elekta vector-
view system which consists of 204 planogradiometers and
102 magnetometer channels. MEG data were band-pass
filtered between 1 Hz and 30 Hz using a third order
Butterworth digital filter to reduce low frequency drifts.
Estimation of the Forward (Lead Field) and Inverse Matrices
was performed using the Brainstorm Toolbox of Matlab.
One thousand dipoles were uniformly placed within the
cortex for creating the forward and inverse matrices.
Focal Area Identification

An example process for identification of the focal area is
shown in FIG. 7. A VAR model (VAR(p)=2?__, B(D)X(t-
T)+€(t)) is estimated in the sensor (gradiometer space) and
then is projected to the source space. If X (1) is the column
vector of MEG signals recorded from the gradiometer
sensors and X, (1) the column vector of source signals inside
the brain, the following relationships hold for every time
point t:

X, ()=AX,(1), Equation 7

X ()=0X,(1) Equation 8

with A being the lead field matrix or forward operator and
@ the inverse operator.

The spatial proximity of MEG sensors introduces colin-
earity between the sensor time series, which can lead to
inaccurate estimation of the VAR model. To counteract this,
principal component analysis (PCA) is applied on the MEG
sensor data and the PCA components that explain 99% of the
data variance are selected. Then, the signals X, ,(t) in the
reduced space can be written as:
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XpcaO)=VX (1), Equation 9

X (D=V"XpcalD), Equation 10

where V is the mapping matrix of feature vectors from the
signals in the sensor space to the reduced PCA space and V*
is its Moore-Penrose pseudoinverse. The VAR(p) model in
the PCA space can be estimated as,

XpcaO=Z e PADX pg(1=T)4 (D).
Accordingly, using Equations 7-11, the VAR(p) model in the
source space can be expressed as:

X (D=2 POV A@) VAX(1—T)+ DV (2)

Equation 11

Equation 12

The directional connectivity measures can now be esti-
mated on the source space directly. The measure of Gener-
alized Partial Directional Coherence (GPDC) is used to
estimate the directional information flow between individual
brain sources. The average inflow to a given source across
a given frequency band at time point t is then estimated. It
was assumed that a candidate focal source at time t is the
source that exhibits maximum average inflow.

Results

The lead field matrix was estimated using the overlapping
sphere model and the inverse matrix was estimated using
wMNE. The results of the application of the interictal focal
area identification approach using MEG data superimposed
on MRI images are shown in FIG. 8. The focus can be
successfully in both subjects: the derived focal source is
within the region of resection (concordant) and subjects
became seizure-free, even if traditional clinical MEG analy-
sis around epileptic spikes failed to localize the focus
correctly (discordant) in one of the two subjects.

Example 3

This example shows that the interictal focal area identi-
fication approach described in connection with the systems
and methods above (e.g., based on the measure of GPDC)
can localize the epileptogenic focus from short term (1 hour)
non-invasive MEG data in connection with a subject’s MRI.
Methods
Subject Selection

MEG recordings from five representative patients under-
going MEG as part of their pre-surgical evaluation were
analyzed. Each patient represented a special case in terms of
the success/failure of the utilized modality for focus local-
ization.

TABLE 3

Subject Clinical Data

Seizure
Patient Clinical SECD FLA Freedom
info Localization MRI Localization Localization (months) Pathology
P1 (54 M) Right Prefrontal Cortex L C C 57 FCD
P2 (34 M) Right Frontal Operculum N C C 51 FCD
P3 (48 M) Left Inferior Frontal Sulcus L C C N/A N/A
P4 (42 F) Right Superior & Middle N D C 26 FCD
Frontal Gyri
PS5 (64 M) Right Peri-Rolandic Cortex L I C N/A N/A
(Epilepsia Partialis Continua)
L—Lesional
N— Normal

C—Concordant,
D—Discordant

I—Indeterminate

FCD—Focal Cortical Dysplasia
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MEG Recording

MEG was recorded with a 306-channel whole-head MEG
system (Elekta, Sweden) with a sampling frequency of 1,000
Hz and acquisition filtering from 0.1 Hz to 333 Hz. All MEG
data were post-processed using a temporally-extended sig-
nal space separation (tSSS) algorithm, which also corrects
for minor head movements in the MEG array. The processed
MEG data were further filtered using a Butterworth filter (a
zero phase digital filter was realized) with passband edges at
1 Hz and 30 Hz and downsampled to 200 Hz. As part of the
patients’ clinical evaluation, source localization analysis
with standard Single Equivalent Current Dipole (SECD) was
performed using Neuromag’s XFIT software (Flekta, Stock-
holm, Sweden). The location, orientation, and strength of the
dipole sources that best fit the measured magnetic fields
were calculated based on the SECD model. SECD analysis
was performed on data segments containing epileptiform
discharges with dipole modeling just before or at the peak of
the global field power of each interictal activity (one or
several clusters of dipoles, one dipole per spike).

Focal Area Identification

Using the example process for identification of the focal
area as shown in FIG. 7, a multivariable autoregressive
(MVAR) model is estimated in the sensor (gradiometer
space) and then is projected to the source space. The spatial
proximity of MEG sensors introduces colinearity between
the sensor time series, which can lead to inaccurate estima-
tion of the MVAR model. To counteract this, principal
component analysis (PCA) is applied on the MEG sensor
data and the PCA components that explain 99% of the data
variance are selected. The MVAR model constructed in PCA
space is then projected to the source space using lead field
and inverse matrix.

One thousand dipoles uniformly distributed over the
cortex were used to create the forward and inverse model.
The overlapping sphere approach is used to estimate the
forward model and weighted minimum norm estimate
(WMNE) to create the imaging kernel. Empty room record-
ing was used to estimate the noise covariance matrix. To
determine directional connectivity between the assumed
dipoles for a 10 second epoch of the recorded MEG data, we
estimate the Generalized Partial Directional Coherence
(GPDC) between the dipoles and using the projected MVAR
model in the source space.

MEG data segments with interictal abnormalities were not
removed during the processing. Typical duration of MEG
recordings is T=60 minutes. The average information flows
of the 10 seconds GPDC between a pair of dipoles over the
entire duration of MEG recording are estimated across
frequencies 0.1 to 30 Hz. For each dipole, the average local
inflow from neighbor dipoles located within the 3-dimen-
sional sphere of radius 5.5 cm and the dipole as the center.

To quantify the presence of abnormal connectivity, the
average inflow of each dipole is compared to the one at the
corresponding dipole on the contralateral hemisphere based
on an unpaired t-test between the inflow values of the 60
closest neighbors of the dipole (including the dipole) and its
counterpart in the contralateral hemisphere. The inflow
values of dipoles with statistically significant inflow
(p<0.01) compared to the ones of dipoles in homologous
regions of source space within the contralateral hemisphere
were further considered in the analysis, while the remaining
(non-significant) inflow values were set to zero. The algo-
rithm was implemented in Matlab 2012b (MathWorks,
Natick, Mass.). The head model and inverse source model
were constructed for each patient using the freely available
MEG toolbox Brainstorm.
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Results
Patient 1

A 54 year-old right-handed male with a history of medi-
cally intractable focal motor seizures starting at the age of 11
years. He presented with daily seizures that were preceded
by a “pulling sensation” over the left arm followed by
asymmetric tonic stiffening of both arms with preserved
awareness, and rare secondarily generalized seizures. Neu-
rological examination was normal. During a period of 5 days
of scalp Video-EEG recordings (Nihon-Kohden, Tokyo,
Japan) no interictal epileptiform abnormalities were identi-
fied. Ictal patterns showed paroxysmal fast activities involv-
ing the right parasaggital electrodes (maximum amplitude
C4>P4, and Cz>Pz). MRI suggested the presence of a focal
malformation within the right hemisphere. This potentially
epileptogenic lesion was located anterior to the precentral
sulcus extending deep into the white matter. Clinical MEG
revealed a single dense cluster of dipoles with uniform
orientation located within the right inferior frontal sulcus
and anterior to the precentral sulcus. In the multidisciplinary
patient management conference (PMC), a decision was
made to proceed to intracranial EEG (ICEEG) monitoring to
map the extent of the epileptogenic cortex and its relation-
ship to eloquent (motor) areas. Subdural grid electrodes
were placed over the frontoparietal convexity focusing on
the perirolandic cortex and the lateral, basal and mesial
compartments of the frontal lobe. Furthermore, depth elec-
trodes were implanted in the vicinity of the lesion. ICEEG
evaluation demonstrated a localized focus within the right
inferior frontal sulcus involving the inferolateral and basal
frontal regions and extending to the face motor area, as
shown in FIG. 9A.

Limited (sublobar) resection of these regions sparing the
hand motor area (post-operative MRI shown in FIG. 9D)
was undertaken 4 years ago based on results of noninvasive
and ICEEG data. The patient has remained seizure-free
since.

FIG. 9 shows the results of ICEEG, SECD clinical MEG
analysis, retrospective FLLA analysis, and area of resection
for this patient. Results of SECD and FLA analyses were
co-registered to the pre-operative MRI as shown in FIGS. 9
B and C respectively. Both SECD and FLA localized the
epileptogenic region to the inferior frontal lobe anterior to
the frontal operculum. A second adjacent region of high
information flow was observed by the FLA residing more
rostrally within the resected inferior frontal lobe. Both
SECD and FLA were concordant with the area of resection.
Both regions identified by FLA were resected.

Patient 2

A 34 year-old left-handed male presented with intractable
focal epilepsy starting at the age of 12 years. Seizures
consisted of an aura described as a tingling sensation deep
in the throat, which would spread to the left side of the face,
followed by left face pulling and left hand posturing. During
this period he would drool and have difficulty speaking
without alteration of awareness. Seizures were brief in
duration and occurred multiple times per day.

No interictal epileptiform abnormalities were identified
during prolonged scalp Video-EEG recordings. Several typi-
cal seizures were captured in the epilepsy monitoring unit
(EMU). Ictal EEG was non-localizable due to the presence
of copious EMG artifacts obscuring any underlying EEG
changes. MRI was normal. Interictal PET showed subtle
hypometabolism involving the right frontal and temporal
operculum. Ictal SPECT did not provide localizing infor-
mation. Clinical MEG showed a tight cluster of dipoles with
uniform orientation located within the right frontoparietal
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operculum, as shown in FIG. 10B. PMC recommended
ICEEG evaluation with stereo-EEG (SEEG) electrodes tar-
geting the right insula, and opercular regions to identify and
delineate the seizure onset zone. SEEG showed simultane-
ous seizure onset from the inferior precentral and parietal
opercular regions, as shown in FIG. 10A. The patient
underwent limited right frontoparietal opercular resection
(FIG. 10D) and has been seizure free for 4 years.

Retrospective FLA analysis localized the region of abnor-
mal inflow near the bottom of the central sulcus and hence
had sublobar concordance with the ICEEG-identified sei-
zure onset zone within the fronto-parietal operculum, as
shown in FIG. 10C. Both SECD and FLA analyses were
concordant with the area of resection.

Patient 3

A 48 year-old left-handed man presented with medically
intractable seizures starting at the age of 5 years. Seizures
were mostly nocturnal and consisted of complex motor and
hyperkinetic behaviors without alteration of awareness
occurring in clusters up to 4 per night. Post-ictally he was
unable to talk but aware of his surroundings.

Prolonged interictal video-EEG recordings showed spikes
involving the left fronto-central region (maximum over the
F3>C3 electrodes). Most of the seizures recorded in the
EMU were nonlocalizable due to EMG artifacts. Few sei-
zures showed increased slowing and sharp wave activities in
the left fronto-central region. MRI showed an area of
T2/FLAIR hyperintensity residing within the left inferior
frontal sulcus associated with subtle blurring of the gray-
white matter junction raising suspicion for an underlying
focal cortical dysplasia. Ictal SPECT revealed areas of
hyperperfusion in the left inferior frontal and anterior insular
regions. Interictal PET showed widespread cortical hypo-
metabolism within the left hemisphere more pronounced in
the left inferolateral frontal and adjacent insular regions.
Clinical MEG revealed very frequent interictal spikes and
polyspikes which were MEG-unique, i.e., they had no
identifiable EEG correlate during concurrent scalp EEG
recordings. ICEEG evaluation was performed with a com-
bination of depth electrodes targeting the inferior frontal
sulcus and anterior insula, and subdural electrodes covering
the inferior fronto-parietal region, as well as the basal frontal
and anterior temporal neocortex. Interictal spikes and sei-
zures were recorded from the banks of the inferior frontal
sulcus corresponding to the clinical MEG and MRI findings,
as shown in FIGS. 11A and B.

Functional mapping using cortical stimulation revealed
eloquent cortex (Broca’s area) in close proximity to the ictal
onset zone. Hence, surgical resection of epileptogenic tissue
was not recommended for this patient.

FIG. 11B shows results of SECD analysis, which local-
ized the source of interictal discharges to the inferior and
middle frontal gyri surrounding the inferior frontal sulcus.
FIG. 11C shows the results of FLLA analysis coregistered to
the patient’s preoperative MRI. Abnormal inflow is
observed in the inferior frontal gyrus and is consistent with
the concordant findings of ICEEG, MEG and MRI lesion.
Patient 4

A 42 year-old right handed female presented with intrac-
table right frontal lobe epilepsy. Seizures started at the age
of 12 years. Seizures were characterized by twitching of the
left fingers with loss of consciousness lasting for 1-2 min-
utes followed by post-ictal confusion and garbled speech.
These spells occurred on a daily basis and evolved to
secondarily generalized convulsive seizures at least once a
week.
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Scalp Video-EEG showed right frontal spikes/polyspikes
(maximum over F4-FZ) as well as bifrontal and generalized
discharges. Ictal EEG patterns were preceded by a sharp
wave with maximum negativity at F4, followed by bifrontal
delta slowing. Brain MRI was normal. Ictal-SPECT revealed
areas of hyper-perfusion within the left and right posterior
insulae. Interictal FDG-PET showed diffuse global cortical
hypometabolism and bitemporal hypometabolism without
definite asymmetry. Clinical MEG did not provide localizing
results due to the widespread distribution of recorded
interictal discharges. Nonetheless some of the scalp EEG
findings raised suspicion of frontal lobe epilepsy possibly
arising from the right hemisphere with rapid secondary
bilateral synchrony. Bilateral implantation with stereo-EEG
electrodes was recommended to further explore this hypoth-
esis. Depth electrodes were implanted targeting the right and
left superior and middle frontal gyri including the supple-
mentary motor area, right and left cingulate gyri and fronto-
parietal opercular regions along with both frontal poles.
ICEEG demonstrated that seizures were arising from the
right anteromesial frontal lobe involving the right superior
and middle frontal gyri with rapid (within less than 0.5
seconds) propagation to the contralateral frontal lobe, as
shown in FIG. 12A. A right premotor frontal lobectomy was
performed (FIG. 12D). The patient has been seizure free for
2 years.

Retrospective FLLA analysis revealed region of maximum
inflow near the middle frontal gyrus which was concordant
with the area of resection, as shown in FIG. 12C. SECD
failed to localize the bulk of the patient’s widespread
interictal activities. Few of the more restricted discharges
were falsely localized within the left cingulate gyrus or
within the bi-occipital cortex based on SECD findings. None
of these regions were included in the area of resection, as
shown in FIG. 12B.

Patient 5

A 64 year-old right handed male presented with right
peri-rolandic epilepsy starting at the age of 62 years. Dis-
crete focal motor seizures associated with left hand stiffen-
ing and jerking lasting for 1-2 minutes with occasional
secondary generalization were reported early on. When the
patient was referred for video-EEG evaluation he had devel-
oped a clinical picture of chronic epilepsia partialis continua
(EPC), characterized by inability to control the left hand
during prolonged periods of recalcitrant myoclonus involv-
ing the wrist and fingers.

Scalp Video-EEG failed to reveal any interictal or ictal
abnormalities during periods of EPC most likely due to the
restricted nature of the epileptogenic generator in this
patient. Nonetheless the patient exhibited persistent irregular
twitches in individual fingers of his left hand, which were
present during rest and on action, and could not be stopped
by positioning. Brain MRI showed a small area of localized
T2 signal alteration within the right central sulcus, as shown
in FIG. 13A. Clinical MEG was unremarkable as no epi-
leptic abnormalities were observed during the recording
session.

No surgery was recommended for the patient given the
localization of the putative MRI lesion within the primary
(hand) motor area. He has been maintained on high doses of
two antiepileptic medications.

Directional connectivity analysis revealed a region of
high inflow within the right pre- and postcentral gyri, as
shown in FIG. 13B. Increased inflow was also observed
within the right middle frontal gyrus. Even though the scalp
video-EEG and clinical MEG studies were unremarkable,
the FLA approach produced localizing results which were
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quite consistent with the patient’s typical electroclinical
presentation of EPC (arising from a perirolandic epilepto-
genic generator) and demonstrated sublobar concordance
with the location of epileptogenic lesion on MRI.

From the above description, those skilled in the art will
perceive improvements, changes and modifications. Such
improvements, changes and modifications are within the
skill of one in the art and are intended to be covered by the
appended claims.

What is claimed is:

1. A system that identifies a focal area of abnormal brain
interactions in a subject, the system comprising:

a non-transitory memory storing computer-executable

instructions; and

a processor that executes the computer-executable

instructions to at least:

receive recordings comprising time series data from a
plurality of regions in a brain of the subject recorded
during a resting period, wherein the resting period
comprises a period of time between instances of
abnormal brain interactions during which the subject
is free of abnormal behavioral symptoms;

fit the time series data to a three-dimensional image of
the brain of the subject to identify a plurality of
possible sources within the plurality of regions of the
brain;

determine an information inflow associated with each
of the plurality of possible sources based on the time
series data, wherein the information inflow reflects a
flow of information to each of the plurality of
possible sources from at least one other brain region;

identify the focal area of the abnormal brain interac-
tions as one of the plurality of possible sources
having a maximum information inflow; and

develop a treatment plan for the abnormal brain inter-
actions in the subject based on the identified focal
area.

2. The system of claim 1, wherein the processor executes
the computer-executable instructions to determine the infor-
mation inflow to each possible source by:

dividing the time series data into a plurality of time

epochs;

for each possible source over each epoch:

determining a direct linear influence of other regions on
the possible source over a corresponding frequency
range; and

determining a value of information inflow to the pos-
sible source based on the corresponding directional
information inflow and the time series data.

3. The system of claim 2, wherein the processor executes
the computer-executable instructions to identify the focal
area of the abnormal brain interactions by:

for each epoch, comparing the value of the information

inflow of each of the possible sources to determine a
possible source exhibiting a maximum inflow value
during the epoch; and

determining the possible source most frequently exhibit-

ing the maximum information inflow value and iden-
tifying this possible source as the focal area of abnor-
mal brain interactions.

4. The system of claim 3, wherein the comparison step is
based on a statistical outlier detection test.

5. The system of claim 2, wherein the direct linear
influence is determined according to an estimation of inter-
actions between each of the plurality of possible sources.

6. The system of claim 2, wherein the direct linear
influence is used to determine a network connectivity
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between the plurality of possible sources that contributes to
the determination of the value of the information inflow to
each of the plurality of possible sources.

7. The system of claim 1, wherein the focal area of
abnormal brain interactions is associated with at least one of
an epileptic seizure, a paroxysmal neurological disorder, a
stroke, an autism spectrum disorder, a psychological disor-
der, a traumatic brain injury, an obesity disorder, an apnea
disorder, a condition comprising a lack of awareness, and a
neurodegenerative disease.

8. The system of claim 1, wherein the time series data
comprises at least one of electroencephalogram data, mag-
netoencephlogram data, thermal imaging data, and func-
tional magnetic resonance imaging data.

9. A method for identitying a focal area of abnormal brain
interactions in a subject, the method comprising the steps of:

receiving, by a system comprising a processor, recordings

comprising time series data from a plurality of regions
in a brain of the subject recorded during a resting
period, wherein the resting period comprises a period
of time between instances of abnormal brain interac-
tions during which the subject is free of abnormal
behavioral symptoms;

fitting, by the system, the time series data to a three-

dimensional image of the brain of the subject to iden-
tify a plurality of possible sources within the plurality
of regions of the brain;
determining, by the system, an information inflow corre-
sponding to each of the plurality of possible sources
based on the time series data, wherein the information
inflow reflects a flow of information to each of the
plurality of possible sources from at least one other
brain region;
comparing, by the system, the information inflow corre-
sponding to each of the plurality of possible sources;

identifying, by the system, the focal area as one of the
possible sources exhibiting a maximum information
inflow; and

developing a treatment plan for the abnormal brain inter-

actions in the subject based on the identified focal area.

10. The method of claim 9, further comprising determin-
ing a statistical significance of the information inflows
corresponding to each of the plurality of potential sources,

wherein the identifying is based on the information

inflows determined to be statistically significant.

11. The method of claim 9, wherein the treatment plan
comprises at least one of a surgical plan, an infusion pump
placement, and a stimulating electrode placement based on
the identified focal area.

12. The method of claim 9, wherein each of the potential
sources corresponds to at least one of a position of a different
recording electrode or a reconstructed source of brain activ-
ity.

13. The method of claim 9, wherein the comparing step is
based on a statistical test associated with a property of the
information inflow.

14. The method of claim 9, wherein the determining step
further comprises:

determining a network connectivity between the plurality

of potential sources; and

determining of the value of the information inflow to each

of the plurality of potential sources based on the
network connectivity.

15. A method for diagnosing a neurological disorder
characterized by one or more focal areas of abnormal brain
interactions in a subject, the method comprising the steps of:
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receiving, by a system comprising a processor, recordings

comprising time series data from a plurality of regions
in the brain of the subject recorded during a resting
period, wherein the resting period comprises a period
of time between instances of abnormal brain interac-
tions during which the subject is free of abnormal
behavioral symptoms;

fitting, by the system, the time series data to a three-

dimensional image of the brain of the subject to iden-
tify a plurality of possible sources within the plurality
of regions of the brain;

determining, by the system, an information inflow corre-

sponding to each of the plurality of possible sources
based on the time series data, wherein the information
inflow reflects a flow of information to each of the
plurality of possible sources from at least one other
brain region;

comparing, by the system, the information inflow asso-

ciated with each of the plurality of possible sources to
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determine the presence of one or more focal areas
exhibiting a maximum information inflow;
diagnosing, by the system, the neurological disorder
based on the presence of one or more focal areas; and
developing, by the system, a treatment plan for the
diagnosed neurological disorder based on the presence
of one or more focal areas.
16. The method of claim 15, further comprising the steps

of:

constructing, by the system, a histogram of the informa-
tion inflow associated with the plurality of potential
sources; and

determining, by the system, the maximum information
inflow based on the histogram.

17. The method of claim 15, wherein the information

inflow corresponding to each of the potential sources is
determined based on a directional information inflow esti-
mation and a network connectivity assessment.
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