Guidelines for Equations, Units, and Mathematical Notation

(An addendum to the Thesis/Dissertation Guidelines provided by the Graduate School, which can be downloaded from https://www.latech.edu/study-with-us/graduate/thesis-dissertation/).

1. Introduction

It is nearly impossible to describe research in physical sciences and engineering without using mathematical symbols, equations, and units. Before you start drafting your thesis or dissertation, you must select a widely cited journal in your discipline and carefully study the instructions to authors. Many of the guidelines given below will be found in those instructions. These guidelines must be regarded as a minimal set. Your advisor or advisory committee may have additional requirements that you must understand and meet.
This document contains the following sections, arranged as follows:

1. Introduction... 1
2. Types of Equations ... 1
(a) In-line Equations .. 1
(b) Displayed, but unnumbered, equations ... 2
(c) Displayed and numbered equations.. 3
(d) Referring to numbered equations ... 4
3. How to compose equations .. 4
4. Numbers and units of measurements, in equations or anywhere in the document.......... 5
5. Chemical Equations .. 6
6. Font size in equations.. 7
7. Concluding Remarks... 7

2. Types of Equations

There are three types of mathematical equations: (a) in-line equations, (b) displayed but unnumbered equations, and (c) displayed and numbered equations.

(a) In-line Equations

An in-line equation is used for particularly simple relationships which (i) do not need vertical space for integrals, fractions, etc., (ii) can be expressed without breaking the flow of the sentence, and (iii) will not be referenced again in the document.

Examples:

A. If volume V and temperature T are known, the ideal gas law can be used to get a reasonable approximation for the pressure of a gas as $P=n R T / V$, where n is the number of moles of gas and R is the gas constant.
B. The standard free energy change for a reversible reaction is related to its equilibrium constant K at a given temperature T as $\Delta G^{\circ}=-R T \ln K$, where R is the gas constant.

Comments:

a) Note that variables like P, T, K, are in italics (not only in the equation itself but wherever they occur!), but not mathematical functions like ln (natural logarithm).
b) Unless all the variables have been defined earlier in the document, the physical significance of all the quantities appearing in an equation must be stated at the point of their first appearance in the document.
c) Note the spaces on either side of the " $=$ " sign. $P=n R T / V$ is a poorly formatted equation.
d) Note the use of a proper minus sign in Example B (as opposed to a short hypen, as in $\left.\Delta G^{\circ}=-R T \ln K\right)$. The minus sign can be obtained by MS Word's Insert|Symbol menu, or as [Alt]+0150 (where the numbers are typed on the numeric keypad). Likewise, the degree symbol on ΔG° is not the number 0 or the lower case letter ' o ' in superscript. It can be inserted from the Insert|Symbol menu or as [Alt]+0176.

(b) Displayed, but unnumbered, equations

Equations that are too complex to be written as in-line equations should be "displayed," which usually means the following:

- The equation is centered between the left and right margins or aligned at a tab stop with some indent from the left margin.
- Some vertical space is provided above and below the equation to set it apart from the text (Format|Paragraph|Spacing \rightarrow "before" and "after"). The equation examples below each have 6 pt vertical spaces above and below.

Examples:

A. The van der Waals equation is used to provide a more accurate expression for the pressure P as a function of the molar volume V_{m} and the temperature T as

$$
P=\frac{R T}{V_{m}-b}-\frac{a}{V_{m}^{2}},
$$

where a and b are van der Waals parameters for the gas.
B. The electric field \mathbf{E} at the origin due to a point charge q at a distance r is given by

$$
\mathbf{E}=\frac{|q|}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}}
$$

where $\hat{\mathbf{r}}$ is the position vector of the point charge.

Comments:

a) Note that in the examples presented above, the displayed equation is part of the text, i.e, it is punctuated, and incorporated into the structure of the sentence. Some journals to not allow punctuation in equations. In consultation with your advisor, you should arrive at a consistent style based on the generally accepted practice in your field.
b) Note that all the scalar variables are italicized whereas the vector quantities in Example B are Roman boldfaced. Vector quantities can also be expressed with arrows above them, as in

$$
\vec{E}=\frac{|q|}{4 \pi \varepsilon_{0} r^{2}} \vec{r} .
$$

Consistently use the same convention throughout the document.

(c) Displayed and numbered equations

One often has to refer back to the important equations. The standard way to do this is by referring to the equation number. Of course, in order to refer to an equation number, one must first number the equations. A consistent system of numbering equations must be adopted. Various options are

- Number equations as (1), (2), etc., starting in Chapter 1 (or at the first numbered equation) and continuing until the end of the last numbered equation in the document.
- Incorporate the chapter number into the equation, as in (1.1), (2.3), (4.6), etc., which means the equation numbering goes back to 1 at the beginning of each chapter.
- Use Roman numerals for chapter numbers, as in (I.1), (II.3), (IV.6) etc.

A consistent numbering convention must be adopted throughout the document.
There are proper and improper ways to number equations. Example A represents a proper way, and B represents an improper way to number a displayed equation.

Examples:

A. The non-relativistic Schrödinger equation for a particle of mass m subject to a potential energy function $V(x)$ in a one-dimensional universe is

$$
\begin{equation*}
\frac{-\mathrm{h}^{2}}{2 m} \frac{d^{2} y}{d x^{2}}+V(x) y(x)=E y(x) \tag{2.1}
\end{equation*}
$$

where $\mathrm{h}=h /(2 \pi), h$ is Plack's constant, and E is the total energy of the system.
B. Eq. (2.1) can be rearranged to give

$$
\begin{equation*}
\left.\frac{d^{2} y}{d x^{2}}+\frac{æ 2}{\gtrless_{e}} \frac{m}{\mathrm{~h}^{2}} \frac{\ddot{\partial}}{\vec{\emptyset}} E-V(x)\right] y=0 . \tag{2.2}
\end{equation*}
$$

Comments:
a) The equation in Example A is approximately centered on the page, and the equation number is aligned by a right-tab at the right margin. Some journals use numbering on the left.
b) The equation in Example B is left-aligned at a rather arbitrary spot. This is not necessarily a bad thing except that Eq. (2.1) was centered and so, for consistency of style, one must center Eq. (2.2) also. Otherwise, both Eqs. (2.1) and (2.2) need to be left-aligned at the same tab stop.
c) The number of Eq. (2.2) is at a different location than that of Eq. (2.1). Again consistency of style is important.
d) Space fillers like "....." in Example B are to be avoided in equations.

Some equations tend to be long while others are short. Therefore, it appears to be best to center each equation and to position the equation numbers as far to the right as possible.

(d) Referring to numbered equations

To cite an equation in text, use an abbreviation if it is not the first word of the sentence. Suitable singular and plural abbreviations include eq and eqs (note no period, as used by the American Chemical Society), eq. and eqs., Eq. and Eqs., Eqtn. and Eqtns., and eqtn. and eqtns. Spell out "Equation" when it is the first word of a sentence and when it is not accompanied by a number. Some journals (e.g., IEEE) allow reference by number alone. So, some possibilities are:

1. Substituting (15) into (14) and integrating, we get (16).

$$
\begin{equation*}
\ln \left(\frac{P_{2}}{P_{1}}\right)=-\frac{\Delta H_{v a p}^{\circ}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \tag{16}
\end{equation*}
$$

2. Equation (16) is obtained by substituting Eq. (15) into Eq. (14) and integrating.

$$
\begin{equation*}
\ln \left(\frac{P_{2}}{P_{1}}\right)=-\frac{\Delta H_{\text {vap }}^{\circ}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) . \tag{16}
\end{equation*}
$$

3. How to compose equations

Microsoft Word provides several ways to compose equations.

- Simple equations can be composed using the "Insert|Field" feature, selecting the "Eq" field. The "Eq" field provides the option of adding various field codes to the field. The field can then be "toggled," and various formatting elements (italics, boldface, superscript, etc.) can be added. The right hand side of the equation $P=\frac{n R T}{V}$ is an "Eq" field with the option \F (fraction). When "toggled" (right-click on the equation and choose "toggle field codes"), it appears as follows: $\{\mathrm{EQ} \backslash \mathrm{F}(n R T, V)$ \}. Note that the font for the variables inside the $\backslash \mathrm{F}($,$) option has been changed to italics so that the$ variables appear italicized in the finished equation. However, composing equations with fields is tedious, and it may be impossible to compose some complicated equations with the available options.
- Word comes with a built-in equation editor. If all the options have been installed, you should be able to choose "Insert|Object" and select "Equation" or "MS Equation." This brings up an equation palette with pull-down menus which can be used to compose the equation. When you are done, close the palette, and the equation appears in the document. A supplementary document on using the MS Word Equation Editor (prepared by Dr. Steven A. Jones) is provided with this document.
- Download and install MathType from Design Science (www.dessci.com). There are alternatives such as MathMagic (http://www.mathmagic.com/) and many others that you may find by running a search engine. If you use MathType or a similar product to compose equations and then send the document to someone who does not have MathType, (s)he will be able to see your equations but may not be able to edit them.

An equation editor automatically takes care of a number of formatting and stylistic issues discussed above.

4. Numbers and units of measurements, in equations or anywhere in the document

The following guidelines should be followed with regard to numbers and units of measurement:
a) The symbols representing physical quantities are printed in italics, but the numbers and the units are given in Roman type.

Examples: $E=2.256 \mathrm{~J}, P=321 \mathrm{~Pa}$, or $\Delta H=-345.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
b) There is typically a space between the number and the unit. There should also be spaces between units when they appear as products (see below). However, there should be no space between the letters of units like millimeter (mm), kilojoules (kJ), femtoseconds (fs), etc. There are some exceptions to this rule. Do not leave a space between a number and the percent, angular degree, angular minute, or angular second symbols (e.g. 35\%, $\left.90^{\circ}, 15^{\prime}, 4^{\prime \prime}\right)$.
c) There should be a space or a dot (not a period) between the units in products of units: Example: $v=325 \mathrm{~m} \mathrm{~s}^{-1}$, or $v=325 \mathrm{~m} \cdot \mathrm{~s}^{-1}$, but NOT $v=325 \mathrm{~ms}^{-1}$ or $v=325 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.
d) Various organizations ${ }^{1}$ have ruled that Kelvin temperature does not have a degree sign before it. So, a temperature may be reported variously as $T=25^{\circ} \mathrm{C}$, or $77^{\circ} \mathrm{F}$, or 298 K . (Note the space between the number and the unit in all cases.)
e) Where possible, use SI or metric units in all technical documents. While other unit systems are common in older literature (English, cgs, etc.), SI units are the standard today. However, the International Committee on Weights and Measures has authorized the continued use of some non-SI units that are either so well established or widely used that it would be impractical to abandon them (e.g. bar, curie, and angstrom).
f) Abbreviate units of measure when they accompany numerals (e.g. " 10 m ," and not "10 meters"). Spell out units of measure when they do not accompany numerals (e.g. "a few grams," not "a few g").
g) Use of zeros following a decimal at the end of a number should only be done when it represents the precision of the measurement. For example, 5.60 g is not the same as 5.6 g in a technical document.
h) A "solidus" (the oblique stroke "/") may be used to indicate division, but it may not be repeated.

Example: $F=325 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$, NOT $F=325 \mathrm{~kg} \mathrm{~m} / \mathrm{s} / \mathrm{s}$.
i) Enclose compound units following a slash (/) in parenthesis to avoid confusion. For example, $8.3145 \mathrm{~J} / \mathrm{K} \mathrm{mol}$ should be written as $8.3145 \mathrm{~J} /(\mathrm{K} \mathrm{mol})$. Another acceptable

[^0]approach is to use negative exponents. For example, the previous value could be written as $8.3145 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.
j) For long numbers not expressed in scientific notation, the digits must be grouped. Commas to mark the thousands, as in 10,000 or 100,000 are fine. However, modern scientific style appears to favor the use of spaces rather than commas, as in 10000 , or $100000 .{ }^{2}$ Spaces are never used in:

- U.S. monetary values which are always written in commas: $\$ 500,000$
- U.S. patent numbers, which are always written with commas: U.S. Patent 5,349,128.
- Page numbers in reference citations, which are always printed without groupings: p 12837
k) The use of a proper minus sign was pointed out earlier [Section 2.(a), Comment (d)]. One must use a proper multiplication sign when using the scientific notation. A proper multiplication sign can be inserted using the "Insert|Symbol" menu of Word, or simply by typing [Alt]+0215.
Examples: $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}, c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$.
There are spaces between the number, the multiplication sign, and the 10 in scientific notation.

The letter ' x ' in a serif font like Times Roman does not look like a multiplication sign, but the same letter ' x ' in a sans serif font (like Arial or Helvetica) could be used in the place of the symbol used above.

1) The number and unit are never to be separated onto different lines. Consider the following example:
"Abbreviate units of measure when they accompany numerals (e.g. " 10 m ," and not " 10 meters")."

See Footnote 2 below to learn how to avoid the problem in the example above.

5. Chemical Equations

Unlike mathematical variables, chemical symbols are written in Roman typeface.

Examples:

A. Calcium carbonate, upon heating, decomposes into calcium oxide and carbon dioxide as

$$
\mathrm{CaCO}_{3}(s){ }^{3 / 4}{ }_{\mathrm{D}}^{3}(\mathbb{R}) \mathrm{CaO}(s)+\mathrm{CO}_{2}(g) .
$$

B. The basic nature of aqueous solutions of ammonia can be readily explained by the following hydrolysis reaction:

$$
\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) f \quad \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

[^1]
Comments:

a) The physical state of the reactants and products (solid, liquid, gas, aqueous solution) are often indicated by italic letters in parentheses, as shown in Examples A and B.
b) The "Math is prose" rule can be adapted for the case of chemical equations also but, very often, chemical equations are stand-alone entities and can be treated as such.
c) When dealing with chemical formulae, one must constantly fight Microsoft's assumption that they know what's best for you, especially Word's tendency to convert letters to upper or lower case automatically, or add letters, depending on their location. For example, if you don't watch out, Word may convert "HOCl" to "Hocl," or "hocl," and the symbol for Thorium (Th) could become "The."
c) Many reactions in organic chemistry require the use of structural formulas. There are commercial software packages available for this (ChemDraw, Chem3D, etc.). The ACD/ChemSketch is "freeware" available from http://www.acdlabs.com/.

6. Font size in equations

Font sizes used in equations must be consistent with the font size of the text. Here are two examples of the wrong ways to format equations:

Here is some text in 12 pt font and some more text and then here is an equation:

$$
C_{P}=a+b T+c T^{-2}
$$

Here is some more text in 12 pt font and here is another equation:

$$
\mathrm{D} H=\dot{\mathrm{O}}_{T_{1}}^{T_{2}} C_{P} d T
$$

In the first example, the font used for the equation is too small compared to the text above and below it and, in the second, the font is too large. Neither is acceptable.

7. Concluding Remarks

People who may help you with English grammar and punctuation may not be familiar with the stylistic conventions commonly used in your field. Download or copy the instructions to authors from a respected journal in your field and study them carefully. The title, names of authors, addresses, abstract, section headings, equation numbering, references, numbering of figures and tables, the way references are presented (the names of authors, names of journals, volume and page numbers, and year of publication) - these are all important to note. When you are writing your thesis or dissertation, study the guidelines provided including this one. A well-written and properly formatted document is a mark of professionalism.

The Word 2016 Equation Editor

When the equation editor should be used

The equation editor should be used to format your equations. In some cases you can use simple Word commands, such as superscript (<control>+) and subscript (<control>=) to format simple variables, as when you wish to say, " L_{1} is the length of the beam," but in doing so, you should pay attention to the font in which the variable is displayed. For example, variables should be formatted in italic font, while function names and units of measure should be in regular font. (It is often easiest to use a shortcut key, as described below, to jump into the equation editor, even if you are simply typing a variable name).

Why the equation editor should be used

Some equations will be nearly impossible to represent without this editor. Others will simply look unprofessional. Compare the following:

$$
\begin{aligned}
& \mathrm{dy} \\
& ---=-\cdots x^{2}+\mathrm{bx}+\mathrm{c} \\
& \mathrm{dx} \\
& (\mathrm{x}-\alpha)^{2} \\
& \frac{\partial y}{\partial x}=\frac{a x^{2}+b x+c}{(x-\alpha)^{2}} \sin (\theta)
\end{aligned}
$$

The second form looks better, requires about a third of the time to create with the equation editor, and is far easier to modify. You can save substantial time if you become familiar with the shortcut commands within the equation editor. This document describes the use of the editor available in Word 2007. This environment differs from the keystroke-based editor that was available in previous versions of Word. It's syntax is similar to that of $\mathrm{Te} \square$ a typesetting program that pre-dates Microsoft Word.

How to enter the equation editor

Position the cursor in a line where you want the equation to appear. Then access the "Insert" ribbon of Word 2013 or later and choose "Equation" (next to "Symbol") as shown in the figure below.

This results in a field such as the one shown below, in which an equation can be entered.
Type equation here.
When you click inside this field, the equation editor menu (shown below) becomes available.

How to enter the equation editor quickly

The quickest way to enter the equation editor is the shortcut key <alt>= (hold down the <alt> key while you type "="). You can also click on "Equation" under the "Insert" tab, but this sequence can become cumbersome when you are setting a large number of equations or defining multiple variables within text. The need to move your hands from the keyboard to the mouse (or mouse pad) slows your typing.

You now have no excuse not to use the equation editor on a casual basis. It is only one keystroke away.

While in the equation editor, you can use various symbols and keywords instead of the more cumbersome menu bar. A more complete description of the codes used by the equation editor and the syntax and philosophy behind it is given by Gardner [1].

1. Single characters, such as ${ }_{-}, \wedge$ and $/$ that have special meanings.
2. Keywords such as lalpha that will be translated to symbols (in this case, α).
3. Keywords such as \sqrt and loverbrace will modify expressions that are correctly grouped.

Note: Spaces are important to the equation editor because they tell the editor when it is time to translate a part of the equation you are typing. Where it is necessary for clarity in this document, a space will be represented by the sequence <sp>.

Insertion of Single Symbols

Keywords can be used to quickly insert a limited number of frequently used symbols. Keywords are case-sensitive (e.g. \rightarrow is different from \Rightarrow).

To insert	Type	Alternative
∞	linfty (Note: it is not linfinity)	
\rightarrow	\rightarrow (try also \leftarrow)	->
\uparrow	luparrow (try also \downarrow)	
\leftrightarrow	\leftrightarrow	
\Rightarrow	\backslash Rightarrow	
∂	\partial	
∇	\nabla	
\leq	Vle	<
\geq	\ge	>=
$a \times b$	altimes b	
$a \cdot b$	aldot b	
$a \ldots b$	aldots b	
$a \cdots b$	alcdots b	
E	lin	
\approx	\approx	
\#	Ine	/=
三	lequiv	
\sim	\sim	
\simeq	\simeq	

\cong	lcong	$\sim=$
\propto	lpropto	
\exists	lexists	
\forall	\forall	
\therefore	\therefore	
\pm	\pm	
\subset	lsubset	
\angle	langle	

Insertion of Spaces

Because spaces have special meaning in the equation editor, and because the equation editor usually handles spacing appropriately, the spacebar cannot usually be used to add spaces within equations. However, spaces can be inserted with the following keywords: (Keywords $\backslash m e d s p$, \thicksp and vthicksp also exist, but \medsp is a not-so-useful synonym for no space at all, and \thicksp and \vthicksp are synonyms for \thinsp).

Thairsp a small space e.g. $x x \quad$ thinsp a wider space e.g. $x x$

Grouping and Brackets

The equation editor causes brackets (such as [], \{\} and ()) to grow to the size of the expression within them. However, parentheses are the grouping character and will not display when used as such. To force parentheses to display, you must double them. To prevent brackets from being reformatted, precede them by the "" character. Some examples follow.

Type	To Display	Comments		
[a/b]	$\left[\frac{a}{b}\right]$	The "/" command for fractions is described in a later section.		
\{a/b	$\left\{\frac{a}{b}\right\}$			
(a/b)	$\left(\frac{a}{b}\right)$	Parentheses display.		
$a /(b+1)$	$\frac{a}{b+1}$	Parentheses used for grouping do not display.		
$a /((b+1))$	$\frac{a}{(b+1)}$	Double parentheses display.		
\{ a atop b \close y	$\left\{\begin{array}{l}a \\ b\end{array}\right.$	The \close keyword completes the opened brace. The \atop command is described in a later section.		
\|(a	b	f $/(\mathrm{c}+\mathrm{d}) \mid$	$\left\|\frac{a\|b\| f}{c+d}\right\|$	The parentheses are, again, used for grouping.
$\|\mathrm{a}\| \mathrm{b}\|/(\mathrm{c}+\mathrm{d})\|$	$\|a\| b\left\|\frac{f}{c+d}\right\|$			

$$
\mathrm{y}=\backslash[\mathrm{a} / \mathrm{b} \backslash] \quad y=\left[\frac{a}{b}\right] \quad \text { Backslashes prevent }[\text { and }] \text { from growing. }
$$

Superscripts and Subscripts

The _ and ${ }^{\wedge}$ keys are used to insert superscripts and subscripts. Grouping is important because it distinguishes between $F_{n^{2}}$ and F_{n}^{2}. Terms can be grouped by enclosing them in parentheses, where the parentheses themselves do not print. Some simple examples follow:

Type	To Display
x_iltimes $\mathrm{y}^{\wedge} \mathrm{n}$	$x_{i} \times \mathrm{y}^{n}$
$\mathrm{x}^{\wedge}(\mathrm{i}+1)$	x^{n+1} (Notice that the parentheses do not show. See "grouping.")
$\mathrm{x} _\mathrm{i}^{\wedge} \mathrm{n}$	x_{i}^{n}
$\mathrm{~F} _\mathrm{n} \wedge^{\wedge}(\mathrm{k}+1)$	F_{n}^{k+1}
$\mathrm{~F} _\left(\mathrm{n}^{\wedge}(\mathrm{k}+1)\right)$	$F_{n^{n+1}}($ Notice that the parentheses are needed. $)$
$\left(_0^{\wedge} 9\right) \mathrm{H}$	${ }_{0}^{9} H$

Division and Stacking

Use the "/" character for division. The equation editor will reformat the expression to place the numerator above the denominator. To prevent vertical buildup of the fraction, use " \backslash " instead of "/" alone. As with superscripts and subscripts, you can use parentheses to group expressions into a numerator and denominator. Examples follow:

Type	To Display	Comments
a / b	$\frac{a}{b}$	
$(\mathrm{a}+\mathrm{b}) /(\mathrm{c}+\mathrm{d})$	$\frac{a+b}{c+d}$	Parentheses do not print.
$((\mathrm{a}+\mathrm{b})) /(\mathrm{c}+\mathrm{d})$	$\frac{(a+b)}{c+d}$	The double parentheses are needed so that the single parentheses print in the numerator.
$((\mathrm{a}+\mathrm{b}) /(\mathrm{c}+\mathrm{d})+$	$\frac{a+b}{c+d}+n$	The "/" is preceded by " \backslash " in the exponential to
$\mathrm{n}) /\left(\mathrm{f}(\mathrm{x})+\mathrm{e}^{\wedge}(1 \mathrm{~V} 2)\right)<\mathrm{sp}>$	$\frac{\text { provide a horizontal fraction }\left(1 / 2 \text { instead of } \frac{1}{2}\right) .}{f(x)+e^{1 / 2}}$	

If you need to stack expressions without the horizontal division line, use \atop or \matrix. The vertical bar "|" can also be used in place of latop.

Type
alatop b or $\mathrm{a} \mid \mathrm{b}$
$(a+b) \backslash a t o p(c+d)$

To Display

a
b
$a+b$
$c+d$

Comments

Do not add spaces between the expression and the vertical bar.

Parentheses do not print.
$\mathrm{f}(\mathrm{x})=\{\backslash$ matrix $\operatorname{\text {infty}} \mathrm{x}=0 @ 0$
x \ne 0 \close

$$
f(x)= \begin{cases}\infty x=0 & \text { The @ character ends a row of } \\ 0 \quad x \neq 0 & \text { the matrix. }\end{cases}
$$

$\mathrm{A}=[\backslash$ matrix
x_11\&x_12\&x_13@
x_21\&x_22\&x23@
X_31\&x_32\&x_33]

$$
A=\left[\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right] \quad \begin{aligned}
& \text { The \& character separates } \\
& \text { columns of the matrix. }
\end{aligned}
$$

Square Roots

The square root keyword \sqrt operates on the argument that follows it. The equation editor also has keywords for higher order roots. Examples are:

$\backslash \operatorname{sqrt~x}$	\sqrt{x}
$\backslash \operatorname{sqrt}(\mathrm{x}+1)$	$\sqrt{x+1}$
$\backslash \operatorname{cbrt}(\mathrm{x}+1)$	$\sqrt[3]{x+1}$
$\backslash \mathrm{qdrt}(\mathrm{x}+1)$	$\sqrt[4]{x+1}$
$\left(-\mathrm{b} \backslash p m \mid \operatorname{sqrt}\left(\mathrm{b}^{\wedge} 2-4 \mathrm{ac}\right)\right) / 2 \mathrm{a}$	$\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Integrals, Products and Sums

Integrals, products and sums are inserted with the keywords \sum, lint and \prod. Use subscripts and superscripts to insert the limits. Examples are:

\sum_($\mathrm{n}=0)^{\wedge} \mathrm{N} \mathrm{x}^{\wedge} \mathrm{n}$	$\sum_{n=0}^{N} x^{n}$
\prod_($\mathrm{n}=0)^{\wedge} \mathrm{N} \mathrm{x}^{\wedge} \mathrm{n}$	$\prod_{n=0}^{N} x^{n}$
lint_--infty^${ }^{\text {¢ }}$ infty $<$ sp> <sp>f(t) e^{\wedge}-ilomega $\mathrm{t}<$ sp>dt	$\int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t$
\iint $\mathrm{f}(\mathrm{x}) \mathrm{dx}$	$\iint f(x) d x$
\iiint $\mathrm{f}(\mathrm{x}) \mathrm{dx}$	$\iiint f(x) d x$
loint $\mathrm{f}(\mathrm{x}, \mathrm{y}) \mathrm{dl}$	$\oint f(x, y) d l$

Font Changes

The equation editor switches between "variable style" or "function style", depending on whether it interprets part of an equation as a variable or a function (compare the two styles in the equation $y=\sin (x)$, which would not look right if it were displayed as $y=\sin (x)$). The variable style can be overridden with several commands. See Gardner [2] for more information.

To Insert

a script character (e.g. \mathcal{F})
regular text
italic text

Use

IscriptF (Notice that there is no space between \script and \mathbf{L})
Enclose in quotes. E.g. "a" $=$ " b " produces $\mathrm{a}=\mathrm{b}$ instead of $a=b$. toggle italic on and off with <control>i
bold text
hello there
hello there
$\mathcal{L}\{f(x)\}$
$x=\mathfrak{R}(x+i y)$
$y=\mathfrak{J}(x+i y)$
toggle bold on and off with <control>b
<control>i hello <control>I there
<control>i hello <control>b there
lscriptL $\{\mathrm{f}(\mathrm{x})\}$
$x=\backslash \operatorname{Re}(x+i y)$
$y=\operatorname{Im}(x+i y)$

Accent Marks, Overbars and Underbars

Certain keywords can be used to place accents, overbars, overbraces and other modifiers on characters and expressions. Examples are:

Type

loverbrace F^{\wedge} "force" $=$
loverbrace(ma) ${ }^{\wedge}$ "Mass times
Acceleration"
loverbar(a+b)

To Display

$\stackrel{\text { Fore }}{F=} \quad \begin{gathered}\text { Mass times Acceleration } \\ m a\end{gathered}$

$$
F=m a
$$

$$
\overline{a+b}
$$

loverparen(a+b)

$$
a+b
$$

lunderbar(a+b)

$$
a+b
$$

Comments

Overbar text is introduced with ^, as if it were a superscript.
(a+b) \bar<sp><sp> also works (note the different placement for lbar vs loverbar)

Some accents are designed to fit over a single character. The keyword must be typed after the modified character and followed by two spaces.
xlbar<sp><sp> \bar{x}
$\mathrm{x} \backslash \mathrm{Bar}<\mathrm{sp}><\mathrm{sp}>\overline{\bar{x}}$
xlcheck<sp><sp> \bar{x}
$\begin{array}{lc}\mathrm{x} \backslash \operatorname{dot}<\mathrm{sp}><\mathrm{sp}> & \dot{x} \\ \mathrm{x} \backslash \operatorname{ddot}<\mathrm{sp}><\mathrm{sp}> & \ddot{x} \\ \mathrm{x} \backslash \text { hat }<\mathrm{sp}><\mathrm{sp}> & \hat{x} \\ \mathrm{x} \backslash \text { tilde< }<\mathrm{sp}><\mathrm{sp}> & \tilde{x}\end{array}$

Prime marks also follow the expression that they modify, but are followed by only a single space:
x\prime<sp> $\quad x^{\prime}$
x\pprime<sp> $\quad x^{\prime \prime}$
x\ppprime<sp> $x^{\prime \prime \prime}$

Greek Alphabet

To include a Greek letter in an equation, spell the name of the letter, preceded by the backslash character (\backslash). If the name begins with a lower case letter, a lower case Greek letter is inserted. If the name begins with an upper case letter, an upper case Greek letter is inserted. The table below provides the names for each of the lower case Greek letters (with some variations).

lalpha	α	lchi	χ	lepsilon	ε	Igamma	γ
lbeta	β	ldelta	δ	phi	ϕ		

leta	η	\omicron	o	lupsilon	v
liota	${ }^{1}$	\pi	π	\varpi	ϖ
Ivarphi	φ	\theta	θ	lomega	ω
\kappa	κ	Ivartheta	ϑ	\xi	ξ
\lamda	λ	\rho	ρ	\psi	ψ
\mu	μ	\backslash sigma	σ	Izeta	ζ
\nu	v	\tau	τ		

Equation Numbers

Equation numbers can be added to equations with the \# character. For example,
$f(x)=a x^{\wedge} 2+b x+c \# E q .2$ becomes

$$
\begin{equation*}
f(x)=a x^{2}+b x+c \tag{Eq. 2}
\end{equation*}
$$

References

1. Sargent, M III, "Unicode nearly plain-tex encoding of mathematics," Office Authoring Services, Microsoft Corporation, 2006 (http://unicode.org/notes/tn28/UTN28-PlainTextMath-v2.pdf).
2. Gardner J, "Shortcuts for the Word 2007 equation editor," (http://dataninja.files.wordpress.com/2007/09/word07shortcuts.pdf).

[^0]: ${ }^{1}$ National Institute for Standards and Technology, International Union of Pure and Applied Chemistry, International Organization for Standardization (Committee 12). International Union of Pure and Applied Physics, and the International Committee for Weights and Measures, to name a few.

[^1]: ${ }^{2}$ If numbers are entered in this way, you must use non-breaking spaces [Ctrl+Shift+Spacebar] so that the two parts of the number do not appear on two different lines when the number occurs near the right margin: 100 000. Non-breaking spaces must also be used between numbers and units and between units that are written as products so that they don't get broken up during subsequent editing of the document.

